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Abstract

When high-dimensional non-uniformly hyperbolic chaotic systems undergo dynamical
perturbations, their long-time statistics are generally observed to respond differentiably
with respect to the perturbation. Although important in applications, this differentiability,
which is thought to be connected to the dimensionality of the system, has remained resistant
to rigorous study.

To model non-uniformly hyperbolic systems, we consider a family of the mathematically
tractable class of piecewise smooth hyperbolic maps, the Lozi maps. For these maps we
prove that the existence of a formal derivative of the response reduces to an exponential
mixing property of the SRB measure when conditioned on the map’s singularity set. This
property appears to be true and is of independent interest. Further study of this conditional
mixing property may yield a better picture of linear response theory.

Because of their irregular behaviour at a trajectory level, chaotic systems are largely studied
in terms of their invariant measures. A widespread and physically relevant class of invariant
measures are the so-called Sinai-Ruelle-Bowen (SRB) measures, which measure the proportion
of time that, over the long term, a Lebesgue-generically initialised orbit will spend in any region
of phase space. For example, in an atmospheric system, the SRB measure encodes climatic prob-
abilities. One may therefore naturally ask how the SRB measures respond when the parameters
of the system are changed.

From this question the so-called linear response theory has developed, which aims to answer
this question to first order. In an autonomous setting we might imagine, on some manifold M,
a one-parameter family of maps fε : M → M with

fε(x) = f(x) + εX(f(x)) + o(ε), (1)

each possessing an SRB measure ρε. The aim of linear response theory is to find a derivative of
ρε at ε = 0, under the assumption that such a derivative exists, which is not always the case [2].

When the system is mixing, the derivative can be expressed formally as a sum

d

dε

∫
Adρε

∣∣∣∣
ε=0

=

∞∑
n=0

κn, (2)

where the susceptibility coefficients are defined as

κn =

∫
M

∇(A ◦ fn) ·X dρ (3)

where ρ := ρ0 is the unperturbed system’s SRB measure. (An attraction of linear response
theory is that this can be computed purely in terms of the unperturbed system.) When the
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susceptibility coefficients are summable, the derivative in (2) typically exists in all examples
where we have mathematical proofs of absolute convergence [2]∗.

Nonetheless, the integrand in (3) can be expected to explode as n → ∞, so one must apply
something more to obtain a convergent sum, such as knowledge of the map’s geometry. When
the map is, say, a uniformly hyperbolic, C3 diffeomorphism, this may be achieved by projecting
X in stable and unstable directions, and performing an integration by parts in (3) along unstable
manifolds to secure convergence of the unstable component [16]. This integration by parts works
because the SRB measure is (by definition) conditionally absolutely continuous along unstable
manifolds, and in fact for uniformly hyperbolic diffeomorphisms its density is smooth with good
control of derivatives.

On the other hand, uniformly hyperbolic maps are rather atypical among chaotic systems: in
applications one is often confronted with tangencies between stable and unstable manifolds. In
this case, the uniform splitting between stable and unstable directions cannot be applied and the
unstable density contains unpleasant singularities. As a result, even using a particular generous
interpretation of regularity, the map ε 7→ ρε is no better than 1/2-Hölder for generic families of
quadratic maps, which model stable-unstable tangencies in one dimension [3]. The reason for
this is that singularities in the map generate singularities in the SRB measure along unstable
manifolds, whose derivatives blow up when pushed forward by the map. This rationale would
predict C0.5− response for all maps with homoclinic tangencies: however, most sufficiently high-
dimensional (non-uniformly hyperbolic) maps appear to have a linear response [10, 21]. Indeed,
the linear response formula in one guise or another has been widely applied in the physical
sciences.

In the last decade a hypothesis for this mismatch has been put forth by Ruelle [17, 18]: the
map’s singularities are supported on a cross-section of the attractor and thus form a fractal set.
Intuitively, this set has a positive dimension, given by the stable dimension ds. If the stable
dimension ds is greater than 3/2, the singularities in the measure, when projected onto a single
unstable manifold, will therefore average out to an absolutely continuous measure, and this mea-
sure’s derivative decays exponentially when pushed forward by the map, thus inducing linear
response in this unstable map. Generalising this further, the response of such a non-uniformly
hyperbolic system should generically be a little worse than Cds−1/2 (in fact, almost-Cds+1/2

regularity is claimed under optimistic claims on the exponential rate of mixing). However, this
conjecture has seen little progress, in no small part because families of non-uniformly hyperbolic
systems in more than one dimension are notoriously difficult to study.

In this paper, therefore, we attempt to make progress through a rigorous study of a pertinent
simpler class of maps, those of piecewise uniformly hyperbolic maps. The edges of the smooth
pieces of these maps model tangencies between stable and unstable manifolds. Compared with
non-uniformly hyperbolic maps they are much easier to deal with: already in linear response
theory, their one-dimensional equivalents have been used as precursors to the logistic map [1].
Furthermore, a robust theory of mixing of piecewise hyperbolic maps has already been developed
[9, 4].

A very simple example of a piecewise hyperbolic map with a positive stable dimension is the
Lozi map on R2 [14, 15, 8, 22]

f(x, y) = (1 + y − a|x|, bx), b ̸= 0 (4)

It is worth noting that by replacing |x| by x2, one recovers the non-hyperbolic Hénon map. For
a ≥ 0, b ∈ (0,min{a −

√
2, 4 − 2a}) this map is known to have a unique SRB measure with

exponential mixing for C1 observables.
The response of such Lozi maps has been shown to be α-Hölder for all α < 1 [9, Theorem 2.13].

In the limit case b = 0 (i.e. the stable dimension ds is zero and we reduce to the one-dimensional
tent map), the Lozi map’s response is generically at best log-Lipschitz†, i.e. slightly worse than

∗Finiteness of analytic continuations of the susceptibility function Ψ(z) =
∑∞

n=0 κnzn at z = 1 is more
suspect: see [12] for an example where this Ψ(z) continues to a bounded function at z = 1, but linear response
but does not obtain [2].

†A function ϕ is log-Lipschitz at s if ∥ϕ(t)− ϕ(s)∥ = O(|t− s| log |t− s|) as t → s.
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Lipschitz or C1 [13, 5]. In light of the aforementioned conjecture on non-uniformly hyperbolic
systems [18], it is natural to ask whether increasing the stable dimension of piecewise hyperbolic
systems (and in particularly the Lozi map) improves the regularity of the response from the
ds = 0 baseline of log-Lipschitz. Since Lozi maps have dimension strictly greater than the
number of positive Lyapunov exponents [19], and hence strictly positive stable dimension∗, this
is to ask:

Do SRB measures of the Lozi map have linear response in general?

This paper’s main result, Theorem 2.3, reduces the question of a formal linear response for
Lozi maps (or conceptually, any piecewise hyperbolic system with exponential mixing) to, up to
small generalisation, the existence of sufficiently fast conditional mixing on the singular line [20]:

Let ρ be the SRB measure of a Lozi map f , let ρS be a scalar multiple of the (suitably
defined) conditional measure of ρ on the singularity set of f , and A,B ∈ C1(R2,R).
Is the following sequence exponentially decaying in n:∫

A ◦ fnBdρS −
∫
Adρ

∫
BdρS . (5)

This is to say that when the weighted conditional measure BρS is pushed forward under the
map f , it (weakly) converges to the SRB measure, and does this exponentially quickly.

In the preceding work [20] conjectured that (5) holds for conditional measures of the SRB
measures on generic lines, supported by careful numerical experiments on the singular line and
strong analogous results in toy models. In this paper we conjecture (Conjecture 2.2) that ex-
ponential conditional mixing holds for the singular line in a specialised sense necessary for
Theorem 2.3. In Section 2 of this paper, we also give numerical evidence indicating the existence
and validity of the formal linear response.

The connection between exponential conditional mixing and linear response arises in the
same way as in [18], namely that the obstructions to linear response arise from non-mixing of
singularities in the smooth hyperbolic structure of the measure, which originate from that of the
map. If these singularities mix quickly, then we expect linear response.

Of course, we have merely related the question of (formal) existence of linear response for
the Lozi map to the question of conditional mixing. While this latter question remains mathe-
matically unresolved, we have clear evidence that it is true, it is seemingly of broader interest
and may be answered in future.

We expect that in practice the regularity of the response is better than differentiable, and
by analogy with the more optimistic statement in [18] would expect a slightly less than C1+ds

response, with ds the stable dimension of the map. An understanding of higher-order response for
piecewise hyperbolic maps would be a step towards understanding the non-uniformly hyperbolic
situation.

While we prove results only for the Lozi map we expect our results can be extended to more
general piecewise hyperbolic maps: for nonlinear maps there is one extra, smooth, term which
standard transfer operator results will show to decay exponentially. Our approach may also shed
light on higher-order response for Sinai billiards, which possess similar piecewise-singularities in
the dynamics for orbits that narrowly miss scatterers [7].

Our paper is structured as follows: in Section 1 we describe the Lozi map as much as necessary
to state our main theoretical and numerical results in Section 2. In Sections 3 we introduce the
existing decay of correlations result, and Section 4 we describe various disintegrations of the
SRB measure; in Section 5 we decompose the susceptibility function into several components
which we then pin down the behaviour of in the following Sections 6–7.

∗c.f. the proof of Proposition 4.3 in the Appendix, which shows that the transverse measure is atomless.
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Figure 1: Picture of the Lozi attractor at a = 1.8, b = 0.35 (black) with an absorbing set M
(green), the singular line ℓS (purple), and the unstable (red, horizontal hatch) and stable (blue,
diagonal hatch) cones on either side of the singular line.

1 Piecewise hyperbolicity of the Lozi map
For b ∈ (0,min{a−1, 4−2a}) the Lozi map (4) has at least one strange attractor Λ (see Figure 1)
contained in a strictly invariant bounded open set [15, 22], where p0 = (2/(2+a−

√
a2 + 4b), 0).

We can choose a strictly invariant closed subset M of the open set such that Λ ⊂ intM is the
unique attractor in M, and note that we can draw M such that it is convex and its edges avoid
the stable cone (defined below).

The Lozi map is piecewise affine. Let the domain of the two pieces of the map be given
respectively by

M± = (R± × R) ∩ intM.

The boundary between these two pieces is the critical line

ℓS = {0} × R. (6)

For x ∈ ℓS we notate x± as x considered respectively as being in M±.
The singular set of M is S := ℓS ∪ ∂M, but the boundary component is neither interesting

nor problematic to us, as it does not intersect with any attractors of f .
Let ccone be less than a+

√
a2−4b
2b by some sufficiently small amount. For a ≥ 1 + b there exist

piecewise-C2 invariant cones

Cu(x, y) = {(ξ, η) ∈ R2 : ξ ≥ ccone|η|} (7)

and
Cs(x, y) = Df−1

(x,y){(ξ, η) ∈ R2 : η ≥ ccone|ξ|}. (8)

These cones are plotted in Figure 1.
These cones satisfy uniform expansion and contraction conditions. In the unstable direction,

DfpCu(p) ⊂ int Cu(f(p)) ∪ {0} for all p ∈ M, and there exists λ > 1 such that

∥Dfpv∥ ≥ λ∥v∥

for all v ∈ Cu(p), p ∈ M. In the stable direction, Df−1
f(p)C

s(f(p)) ⊂ int CS(p)∪{0} for all p ∈ M,
and there exists µ < 1 such that

∥Df−1
f(p)v∥ ≥ µ−1∥v∥

for all v ∈ Cs(f(p)), p ∈ M. The tangent vectors to the singular line ℓS are transverse to all
stable cones, and as mentioned before it is possible to construct M so that the pieces of the
boundary ∂M also are also all transverse to stable cones.

Let vu and lu be the unstable vector bundle (resp. covector bundle) of f , defined such that
∥vu(x)∥ ≡ lu(x)vu(x) ≡ 1, and vu(x) · e1 > 0 (i.e. vu is always pointing to the right, and
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therefore always in Cu). Similarly, let vs(x) and ls(x) be the stable vector bundle and covector
bundle respectively such that ∥vs(x)∥ = ls(x)vs(x) = 1, and vs(x) · e2 > 0 (i.e. vs is always in
the stable cone Cs).

Furthermore let us define the pointwise rate of expansion along unstable manifolds

λn(x) := lu(fn(x))Dxf
nvu(x) (9)

and the pointwise rate of contraction in the stable direction (in backwards time)

µn(x) := ls(x)Df−n(x)f
nvs(f−n(x)) = det(Df−n(x)f

n)/λn(f
−n(x)).

We have |λn(x)| ≥ λn > 1 and |µn(x)| ≤ µn < 1.

2 Main results
In the first instance we prove that one can define something akin to a conditional measure of
the SRB measure ρ along any leaf of an appropriate foliation. This is necessary, because we
are interested in a specific leaf (the singular line), and abstract results only give existence for
almost all leaves. By contrast, the proof of this theorem will rely on the SRB measure’s manifold
structure.

Theorem 2.1. For each x ∈ R there exists a positive Borel measure ρx with support on ℓx :=
{x} × R such that:

a. supx∈R ρx(ℓx) <∞;

b. For all x ∈ R and all A : R2 → R bounded and continuous,∫
R2

Adρx = lim
δ→0

1

2δ

∫
(x−δ,x+δ)×R

A dρ. (10)

c. For all measurable E ⊆ R2,

ρ(E) =

∫
R
ρx(ℓx ∩ E) dx.

Furthermore, (10) specifies ρx uniquely.

Note that these measures are not themselves probability measures in general, but are scalar
multiples of the conditional measures along the ℓx. To disambiguate therefore, we call these
measures ρx “slice measures”. This measures ρx are supported on Cantor sets Λ ∩ ℓx, which we
reasonably expect to be of Hausdorff dimension strictly between zero and one.

Our interest is in the slice measure on the singular set ρS := ρ0. In Figure 2, a histogram of
ρS for the Lozi map at standard parameters a = 1.7, b = 0.5 is plotted.

We will make the following “conditional mixing” conjecture, which is analogous to [20, Con-
jecture 4.1] and numerically supported in [20]:

Conjecture 2.2. There exists a Banach space B with the following properties:

• C1(M) ⊆ B ⊆ L∞(M);

• For any Y ∈ C2 the functions lsY, luY ∈ B;

• There exist c, θ ∈ (0, 1) and C > 0 such that for all A,B,Γ and m,n ≥ 0,∣∣ρS (
(A ◦ fn+m) (B ◦ fm) Γλ−1

m

)
− ρ(A)ρS(B ◦ fmΓλ−1

m )
∣∣ ≤ C∥A∥C1∥B∥B∥Γ∥BV (S)c

nθm

(11)
and∣∣ρS (

(A ◦ fn) (B ◦ f−m) Γµm
)
− ρ(A)ρS(B ◦ f−m Γµm)

∣∣ ≤ C∥A∥C1∥B∥B∥Γ∥BV (S)c
nθm,
(12)

where µ(ψ) :=
∫

R2 ψ dµ for measures µ and functions ψ.
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Figure 2: Left: picture of the Lozi attractor at a = 1.7, b = 0.5 (black), the singular line ℓS
(purple), their intersection (orange). Right: histogram of ρS on ℓS , obtained from 200,000

iterates of the unstable manifold dynamics f⃗ , binned at width 0.0025. Figure reprinted from
[20].

In other words, A and the rest of the integral decorrelate as n→ ∞ in a way that is uniformly
bounded (and in fact decaying exponentially in m, as expected given the presences of λ−1

m , µm).
If ρS lay, as ρ does, in the Banach space defined in Section 3 on which the transfer operator has
a spectral gap, we would expect this result to hold.

Note that by setting B = Γ = 1, m = 0, we recover that for all A ∈ C1, n ∈ N,∣∣∣∣∫
ℓS

(A ◦ fn) dρS − ρ(A)ρS(1)

∣∣∣∣ ≤ C∥A∥C1cn. (13)

for some C, c ∈ (0, 1), as expected in [20, Conjecture 4.1].
Now, formally we expect a Lozi map f to obtain a linear response to perturbations given by (1)
if the susceptibility coefficients

κn :=

∫
M

∇(A ◦ fn) ·X dρ (14)

are summable. Our main theorem is that Conjecture 2.2 delivers this to us:

Theorem 2.3. Under Conjecture 2.2, there exist C, c < 1 such that for all A ∈ C1, X ∈ C2,

|κn| ≤ Ccn∥A∥C1∥X∥C2 (15)

for some C > 0, c ∈ (0, 1).

We might ask ourselves whether the existence of a formal linear response for the Lozi map
can be supported numerically. To this end, we computed a Monte Carlo estimate of the suscep-
tibility function for a Lozi map using the numerical implementation of the segment dynamics
developed in [20] (our proof of Theorem 2.3) will rely on similar notions) and the expressions
in Proposition 5.1. This estimate is plotted in Figure 3. It can be seen that all terms in the
susceptibility function exhibit exponential decay to their respective limits, which sum up to zero,
as required.

We also present numerical evidence that this formal linear response actually translates to
differentiability of the true response. In Figure 4 we plot the true and (formal) linear response
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Figure 3: For the parameters of the Lozi map a = 1.8 and b = 0.35, the susceptibility function
for the perturbation X(x, y) = (0, y), and its components as given in Proposition 5.1, using
methods developed in [20]. Quadruple precision (106-bit mantissa) floating-point was used, with
100 runs of length 400, 000. Error bars (too small to see) quantify the sampling error [11].

for a family of Lozi maps fε with parameters (a, b) = (1.8, 0.35(1 + ε)); in Figure 5 we plot
the difference between these on a small parameter range. The formal linear response we obtain
clearly appears to correspond to the true derivative of the response.

One might go a step further and ask how smooth the true response should in fact be. When
studying systems with homoclinic tangencies, we suggested that Ruelle’s argument could extend
to saying that the response should be approximately C1/2+ds where ds is the stable dimension
(i.e. the dimension of the attractor restricted to a stable manifold): we can further analogise
this to say that piecewise hyperbolic systems should have an approximately C1+ds response. We
plot in green a possible Taylor approximation error based on this level of smoothness in Figures
4–5: the error appears to be of the correct magnitude.

Analogising to systems with stable-unstable tangencies, this corroborates the claim that
“generic smooth chaotic systems have Cds+1/2 response” [18]. Indeed, in the smooth case, expo-
nential conditional mixing (perhaps in a more general, e.g. fractionally differentiated, form) is
the mechanism required to obtain this.

The remainder of this paper will be largely be tasked with proving Theorem 2.3. Let us
sketch the idea of the proof. Because the Lozi map is uniformly hyperbolic, the perturbing
vector field X can be split into stable and unstable parts. The susceptibility coefficients κn can
therefore too be split into stable and unstable parts (Proposition 5.1). It is standard that the
stable part κsn is exponentially decaying (Proposition 5.2); as with smooth hyperbolic systems
the unstable part contains a correlation term κXn between A and a smooth function, which is
therefore exponentially decaying (Proposition 6.1). However, there are two extra terms: one, κρn,
arises from discontinuities in the unstable vector field (Proposition 7.5), and the other, κln, arises
from discontinuities in the stable vector field (i.e. unstable covector field, Proposition 7.1). These
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Figure 5: The difference between true and linear response for the same parameters as in Figure 3.
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discontinuities are generated by the discontinuity of the map’s derivative and so lie in the forward
(respectively backward) orbit of the singularity set, hence the application of Conjecture 2.2.

3 Decay of correlations for regular distributions
To prove our results, we will need to introduce some theoretical tools. In this section, we present
the current exponential decay of correlations theory.

As an application of [4, Theorem 2.5] we have exponential decay of correlations for the Lozi
map in a certain Banach space:

Proposition 3.1. There exists a Banach space of distributions (C1)∗ ⊃ H ⊃ C1, given in [4,
Theorem 2.5] and C > 0, ξ ∈ (0, 1) such that for all functions A ∈ C1 and all finite signed Borel
measures ϕ ∈ H, we have∣∣∣∣ ∫

M
A ◦ fn dϕ−

∫
M
A dρ

∫
M

dϕ

∣∣∣∣ ≤ C∥A∥C1∥ϕ∥Hξn.

We prove this result in the Appendix.
We will not interact with the construction of H directly, but will instead use some more

abstract results to construct functions lying in H. The first result is as follows:

Lemma 3.2 ([4], Lemma 4.1). There exists a constant C♭ such that for any function ϕ ∈ H and
any function g ∈ C1,

∥gϕ∥H ≤ C♭∥g∥C1∥ϕ∥H.
The second result regards multiplication by dynamically relevant characteristic functions. If

the symbol space of the Lozi map is Σ = {+,−} corresponding respectively to the sets M±, we
can define cylinders at the beginning and at the end for n ∈ N and i ∈ Σn:

Ob
i =

n⋃
m=1

f1−m(Mim) (16)

Oe
i = fn(Ob

i ) =

n⋃
m=1

fn+1−m(Mim). (17)

The following lemma says that multiplication by the characteristic functions of these sets is nice:

Lemma 3.3. There exists a constant C# such that for any function ϕ ∈ H and any initial or
final cylinder O,

∥1Oϕ∥H ≤ C#∥ϕ∥H.
Lemma 3.3 requires us to understand the geometry of the cylinders, in particular the number

of intersections they have with lines in the stable cone. A more general but relatively weak
bound is given in the proof of [4, Lemma 5.1]; for simplicity in the sequel we will use a strong
bound that arises from the following property of Lozi maps:

Proposition 3.4. Intersections between any initial or final cylinders Ob
i ,Oe

i and any line in R2

are connected.

Proof of Proposition 3.4. We can prove by induction on the length of i that the final cylinders
are convex. The cylinders of indices of length 1 are Oe

[±] = M± which are convex; from (17)
and since f is a bijection we have that

Oe
i = f(Oe

i1:n−1
∩Min).

Now, the intersection of two convex sets is convex; f applied to Oe
i1:n−1

∩Min ⊆ Min is linear,
so preserves convexity, giving us the inductive step.

By definition we then have that for k ≤ n, f−k(Oe
i ) ⊆ Min+1−k

, and so f−n applied to Oe
i is

linear. Thus, the initial cylinders Ob
i = f−n(Oe

i ) are also convex.
Lines are also convex objects, and thus their intersections with the cylinders are also convex

and therefore connected.
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Proof of Lemma 3.3. Our cylinders are convex so their intersections with any line (in particular,
any line in the stable cone) will have exactly one connected component: an application of [4,
Lemma 4.2] combined with [4, Definition 2.12] gives the boundedness of this multiplication.

4 Disintegration and measures
To tame the susceptibility function (14) we will need to perform an integration by parts, requiring
us to differentiate the SRB measure in some sense. This necessitates an understanding of the
structure of the SRB measure, which we develop in this section; in the course of this we will
prove Theorem 2.1.

4.1 Unstable manifold dynamics
To understand the structure of the SRB measure we will find it useful to lift the dynamics on
points onto dynamics on local unstable manifolds. To do this, we must first define these objects.

Every point in Λ\
⋃∞
n=1 f

n(S) has a local unstable manifold

Wu
loc(x) =

{
y ∈ Λ : lim

n→∞
∥f−n(y)− f−n(x)∥ = 0, ∀n ≥ 0 Mf−n(y) = Mf−n(x)

}
, (18)

where we let M(p1,p2) := Msign p1 be the domain in which the point (p1, p2) lies. It follows
naturally that x ∼ y ⇐⇒ y ∈ Wu

loc(x) is an equivalence relation.
Let

Ip,q := {(1− t)p+ tq : t ∈ (0, 1)}. (19)

denote an segment between p and q. Conversely, let pI and qI respectively denote the start-point
and end-point of an segment I, where either I has been given a direction or the choice does not
matter.

Since the Lozi map is piecewise affine, it has certain pleasant affine properties [8]:

Proposition 4.1. For ρ-almost every x ∈ Λ, there exist distinct p, q ∈ Λ such that Wu
loc(x) =

Ip,q. Furthermore, the conditional measure of ρ on Wu
loc is the uniform measure.

Let us therefore define the set of directed local unstable manifolds

L⃗ = {I⃗ : ∃x ∈ Λ I = Wu
loc(x)}

where I⃗ is a directed segment in R2 (that is, start points and end points are distinguished).
Directedness of manifolds will become useful to us when in future we wish to take directional
derivatives.

On the other hand, we can define a set of undirected local unstable manifolds

L̂ = {Wu
loc(x) : x ∈ Λ}

which is in the obvious two-to-one relationship with L⃗.
Let us also define the following product space, which we will use to parametrise each I⃗ ∈ L⃗

Λ⃗ = L⃗ × (0, 1).

Thus, Λ⃗ can be understood as containing the set of points in Λ with their (directed) unstable
manifolds, through the ρ-almost everywhere two-to-one map π : Λ⃗ → Λ

π(I⃗ , t) := (1− t)pI⃗ + tqI⃗ ,

where we denote the start point (resp. end point) of the directed segment I⃗ to be pI⃗ (resp. qI⃗).
The collection of undirected segments L̂ naturally inherits a measure ρ̂ from ρ via dρ̂(I) =

dρ(I). This ρ̂ is known as the transverse measure in the disintegration of ρ into unstable
manifolds. Furthermore, using Proposition 4.1,∫

M
A(x) dρ(x) =

∫
L̂

∫ 1

0

A(π(I⃗ , t)) dtdρ̂(I) (20)
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for arbitrary choice of orientation I⃗.

Our local unstable manifolds are covariant under the flow, except that when they cross the
critical line ℓS they are cut into two pieces. In particular, for x /∈ ℓS ,

Wu
loc(f(x)) = f(Wu

loc(x) ∩Mx),

Let us define the (one-step) descendants of an segment I⃗ ∈ L⃗ to be the appropriately oriented
local unstable manifolds contained in f(I⃗):

D(I⃗) := {f(M+ ∩ I⃗), f(M− ∩ I⃗)}, (21)

and its non-oriented equivalent D(I). We have that

f(Wu
loc(x)) =

⋃
y∈Wu

loc(x)

Wu
loc(f(y)),= ∪D(Wu

loc(x)),

a union of at most two distinct segments.

4.2 Measures on the singular line
Let us define the singular (non-probability) measure for E ⊆ S as

σ̂(E) =

∫
L̂
|I|−1 dρ̂(I), (22)

We also have the vector equivalent:

σ⃗(E) :=

∫
L⃗

dρ̂(I⃗)

2(q − p) · vu(I⃗)
, (23)

with d|σ⃗|([I⃗]) = σ̂([I]) and dσ⃗(I⃗p,q) = −dσ⃗(I⃗q,p). We introduce the factor of 2 to allow both
orientations for the segments I⃗.

The measures σ⃗ and σ̂ are closely related to the “slice” measures ρx, which we will now define.
For all Borel sets E ⊂ ℓx, we define ρx(R2\E) = 0 and

ρx(E) =

∫
L̂

 ∑
s∈I∩E

(vu · e1)(s)−1 + 1
2

∑
s∈{pI ,qI}∩E

(vu · e1)(s)−1

 dσ̂(I). (24)

The following lemma gives us, pleasantly, that the second summand can be omitted for
ρ0 = ρS :

Lemma 4.2. For all A ∈ L1(ρS), the following relation holds:∫
L̂

∑
s∈I∩ℓS

A(s) dσ̂(I) =

∫
ℓS

A(s)vu(s) · e1 dρS(s).

Furthermore, 0 < c ≤ vu · e1 ≤ 1 for some c.

We will use the following proposition, proved in the appendix, to show this:

Proposition 4.3. The forward orbit of ρS-almost every y ∈ ℓS has no other intersections with
ℓS .

Proof of Lemma 4.2. From (24), integrating the measurable function (vu ◦ e1)A over ρS = ρ0
gives ∫

ℓS

A(s)vu(s) · e1 dρS(s) =
∫
L̂

 ∑
s∈I∩ℓS

A(s) + 1
2

∑
s∈{pI ,qI}∩ℓS

A(s)

 dσ̂(I). (25)

Now, Proposition 4.3 states that the set of points {s ∈ ℓS | ∃I⃗ ∈ L⃗ s ∈ {pI⃗ , qI⃗}} has zero
ρS -measure. Therefore, from (24) the set of intervals containing these points—i.e. where the
second sum in (25) contributes—must also have zero σ̂ measure.

11



We now begin to unwind the relationship between the ρx and σ̂, beginning by proving finite-
ness of the ρx.

Proof of Theorem 2.1a. Define the slice Lx,δ = (−x−δ, x+δ)×R, Considering the disintegration
to unstable segments, for either choice of orientation I⃗ of I, we find

1

2δ

∫ 1

0

1(π(I⃗ , t) ∈ Lx,δ)dt =
1

2δ

∫ 1

0

1
(
(1− t)pI⃗ + tqI⃗ ∈ Lx,δ

)
dt

=
Leb

(
[xpI⃗ , xqI⃗ ] ∩ (x− δ, x+ δ)

)
2δ|xqI⃗ − xpI⃗ |

. (26)

Now, for any choice of s ∈ I, |xqI⃗ − xpI⃗ | = vu(s) · e1|I|. As δ → 0 we therefore recover the limit

lim
δ→0

1

2δ

∫ 1

0

1(π(I⃗ , t) ∈ Lx,δ) dt = |I|−1

 ∑
s∈I∩ℓx

(vu · e1)(s)−1 + 1
2

∑
s∈{pI ,qI}

(vu · e1)(s)−1

 . (27)

On the other hand, considering the measure as a whole, we have that

1

2δ

∫
Lx,δ

dρ =
1

2δ

∫ x+δ

x−δ
dπ∗

xρ,

where πx is the coordinate in the x direction. By [22, Lemma], the measure π∗
xρ is absolutely

continuous with bounded density, and so in particular, there exists a constant C such that for
all δ > 0, x ∈ R,

1

2δ

∫
Lx,δ

dρ ≤ C. (28)

We can of course disintegrate by the unstable measure to say that∫
L⃗

1

2δ

∫ 1

0

1(π(I⃗ , t) ∈ Lx,δ)dtdρ⃗(I⃗)dρ ≤ C (29)

Let us attempt to combine these. Let us define L⃗x = {I⃗ ∈ L :
¯⃗
I ∩ ℓx ̸= 0} to be the set of

directed segments that intersect, or whose endpoints coincide with, the line ℓx. Given this is a
subset of L⃗, we can use (29) to say that∫

L⃗x

1

2δ

∫ 1

0

1(π(I⃗ , t) ∈ Lx,δ)dtdρ⃗(I⃗)dρ ≤ C.

Now, right-hand side is an integral of (26) over different segments I⃗ ∈ L⃗x. It is easy enough
to see that when I⃗ intersects ℓx, the expression in (26) is increasing in δ, so we can use the
monotone convergence theorem to say that

C ≥
∫
L⃗x

1

2δ

∫ 1

0

1(π(I⃗ , t) ∈ Lx,δ)dtdρ⃗(I⃗)

=

∫
L⃗x

 ∑
s∈I∩ℓx

(vu · e1)(s)−1 + 1
2

∑
s∈{pI ,qI}

(vu · e1)(s)−1

 |I|−1 dρ⃗(I⃗)

using (27) in the last equality. We can extend the domain of integration of this integral from
L⃗x to L⃗ without changing its value. We then have that |I|−1 dρ⃗(I⃗) = |dσ⃗(I⃗)|, and can drop the
directionality. This just recovers ρx(ℓx) from (24), and so we have a uniform bound on ρx(R2)
as required for part a.

The finiteness of σ̂ (therefore of σ⃗) will follow from that of ρ0 = ρS :

12



Proposition 4.4. σ̂ is a finite measure.

To prove this, we will need a lemma. The following result will also be useful in understanding
the behaviour of integrals with respect to σ⃗ under f dynamics. This will enable us to prove
Proposition 4.4, as well as iteratively reducing various integrals over forward/backwards orbits
of ℓS to integrals over ℓS .

Lemma 4.5. For any ψ : L⃗ → R, and any choices of point uJ⃗ ∈ f−1(J⃗) for each J⃗ ∈ L⃗,∫
L⃗
ψ(I⃗) dσ⃗(I⃗) =

∫
L⃗

∑
J⃗∈D(I⃗)

λ1(uJ⃗)
−1ψ(J⃗) dσ⃗(I).

Proof. Recall from (21) that the descendants D(I⃗) of a directed segment I⃗ ∈ L⃗ are the (up to
two) directed segments created by applying the map f to it.

Because each segment J⃗ ∈ L⃗ is the descendant of exactly one segment I⃗ ∈ L⃗, we can write∫
L⃗
ψ(I⃗) dσ⃗(I⃗) =

∫
L⃗

∑
J⃗∈D(I⃗)

ψ(J⃗) dσ⃗(J⃗).

Now from the definition of σ⃗ in (23),

2dσ⃗(J⃗p′,q′) =
dρ(J⃗p′,q′)

(q′ − p′) · e1
=

dρ(f−1(J⃗p′,q′))

(q′ − p′) · vu(f(uJ⃗p′,q′ ))
.

Recalling that f−1 is affine on J⃗p′,q′ and the definition of λn (9),

(q − p) · vu(f(uJ⃗p′,q′ )) = λ1(uJ⃗p′,q′
)(f−1(q′)− f−1(p′)) · vu(f(uI⃗)).

Because J⃗ is oriented in the same direction as f(I⃗), we have that

(f−1(q′)− f−1(p′)) · vu(uf(I⃗)) =
∥f−1(q′)− f−1(p′)∥

∥q − p∥
(q − p) · vu(f(uI⃗)).

Finally, because ρ is uniform on unstable leaves,

∥f−1(q′)− f−1(p′)∥
∥q − p∥

=
dρ⃗(f−1(J⃗))

dρ⃗(I⃗)
,

and hence we find∫
L⃗
ψ(I⃗) dσ⃗(I⃗) =

∫
L⃗

∑
J⃗∈D(I⃗)

ψ(J⃗)
dρ⃗(I⃗)

λ1(uJ⃗) 2(q − p) · vu(f(uI⃗))
,

which through the definition of σ⃗ gives the required result.

Proof of Proposition 4.4. We are given that ρS(ℓS) < ∞ by Theorem 2.1a. If we set A ≡ 1 in
Lemma 4.2 then we have that∫

L̂
|{I ∩ ℓS ̸= ∅}|dσ̂(I) =

∫
ℓS

dρS =: K <∞. (30)

That is, the σ̂-measure of segments intersecting the singular line is finite.
Set for n ∈ N ∪ {∞}

Fn =

n⋃
k=1

{I ∈ L̂ : D−k(I) ∩ ℓS ̸= ∅}.

13



Now, by Lemma 4.5,∫
L̂

1I∈Fn+1
dσ̂(I) =

∫
L̂

∑
J⃗∈D(I⃗)

λ1(uJ⃗)
−11J∈Fn+1

dσ̂(I)

Since each descendant J has D−1(J) = I, this implies that∫
L̂

1I∈Fn+1
dσ̂(I) ≤ λ−1

∫
L̂
|D(I⃗)|1I∈Fn

dσ̂(I). (31)

Now, the number of times I is cut by the singularity line |{I ∩ ℓS ̸= ∅}| will be one less than the
number of descendants of I. Recalling additionally that characteristic functions are bounded by
one and that Fn ⊆ Fn+1 we can split∫

L̂
|D(I⃗)|1I∈Fn

dσ̂(I) =

∫
|{I ∩ ℓS ̸= ∅}| dσ̂(I) +

∫
L̂

1I∈Fn
dσ̂(I)

≤
∫

|{I ∩ ℓS ̸= ∅}| dσ̂(I) +
∫
L̂

1I∈Fn+1 dσ̂(I)

which combined with (30) and (31) gives us that∫
L̂

1I∈Fn+1
dσ̂(I) ≤ λ−1

(
K +

∫
L̂

1I∈Fn+1
dσ̂(I)

)
and so ∫

L̂
1I∈Fn+1dσ̂(I) ≤ K/(λ− 1).

Now, from [20, Proposition A.1] we have that F∞ has full ρ̂ (and thus σ̂) measure, which means
that by the monotone convergence theorem∫

L̂
dσ̂(I) ≤ K/(λ− 1) <∞.

We finish this section by proving the remainder of Theorem 2.1.

Proof of Theorem 2.1b–c. To prove part b, we decompose

1

2δ

∫
Lx,δ

A dρ =

∫
L⃗

1

2δ

∫ 1

0

A(π(I⃗ , t))1(π(I⃗ , t) ∈ Lx,δ) dtdρ⃗(x).

By a similar argument used to bound (26), we have

1

2δ

∫ 1

0

A(π(I⃗ , t))1(π(I⃗ , t) ∈ Lx,δ) dt ≤
1

2δ
∥A∥L∞∥(vu · e1)−1∥L∞ min{1, 2δ/|I⃗|}

≤ C∥A∥L∞

|I⃗|

for some C <∞, recalling that by the definition of the unstable cone Cu, vu ·e1 is bounded away
from zero. From Proposition 4.4, σ⃗ must be finite (because σ̂ is): this is equivalent to saying
that |I⃗|−1 is integrable with respect to ρ⃗. Hence, by the dominated convergence theorem,

lim
δ→0

1

2δ

∫
Lx,δ

Adρ =

∫
L⃗

lim
δ→0

1

2δ

∫ 1

0

A(π(I⃗ , t))1(π(I⃗ , t) ∈ Lx,δ) dtdρ⃗.

As in part a, and using the continuity of A along unstable leaves, we obtain that

lim
δ→0

1

2δ

∫ 1

0

A(π(I⃗ , t))1(π(I⃗ , t) ∈ Lx,δ) dt = |I|−1

 ∑
s∈I⃗∩ℓS

A(s)

(vu · e1)(s)
+ 1

2

∑
s∈{pI⃗ ,qI⃗}∩ℓS

A(s)

(vu · e1)(s)
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and so by the definition of ρx in (24),

lim
δ→0

1

2δ

∫ 1

0

A(π(I⃗ , t))1(π(I⃗ , t) ∈ Lx,δ) dt =

∫
ℓx

A dρx,

giving what is required.

We now turn to part c. If 1E is the characteristic function of Borel set E ⊂ R2, then∫
R

∫
ℓx

1E dρx dx =

∫
R

∫
L̂

 ∑
s∈I∩ℓx

1E(s)(v
u · e1)(s)−1 + 1

2

∑
s∈{pI ,qI}∩E

1E(s)(v
u · e1)(s)−1

 dσ̂(I) dx.

The integrand is absolutely convergent, so we can apply Fubini’s theorem to say∫
R

∫
R2

1E dρx dx =

∫
L̂

∫
R

 ∑
s∈I∩ℓx

1E(s)(v
u · e1)(s)−1 + 1

2

∑
s∈{pI ,qI}∩E

1E(s)(v
u · e1)(s)−1

 dx dσ̂(I)

=

∫
L⃗

∫
R

∑
s∈I⃗∩ℓx

1E(s)(v
u · e1)(s)−1dx dσ⃗(I)

=

∫
L⃗

∫ 1

0

1E(π(I⃗ , t))|I⃗|dσ⃗(I⃗)

=

∫
Λ

1E dρ,

as required.

It only remains to show that ρx is uniquely defined by (10). The right-hand side of (10) is
independent of the choice of ρx, so the integral of ρx with respect to any continuous function is
prescribed. The support of ρx must be contained in M̄∩ ℓx, which is a one-dimensional interval.
The monotone convergence theorem then implies that the measure of ρx is prescribed on all
open sets (and in particular must be finite). This then implies equivalence for all Borel sets [6,
Lemma 7.1.2].

5 Decomposition of response
With these results in hand, we can begin to break apart the susceptibility (14).

Recalling the definitions of the stable and unstable bundles in Section 1, let the unstable
projection operator be

Pu(x) = vu(x)lu(x)

and the stable projection operator be

Ps(x) = vs(x)ls(x) = id−Pu(x).

Proposition 5.1. The susceptibility coefficients (14) can be decomposed as

κn = κsn + κXn + κρn + κPn (32)

where

κsn =

∫
M

∇(A ◦ fn) · PsX dρ (33)

κXn = −
∫
M
(A ◦ fn) lu(DX)(vu) dρ (34)

κρn =

∫
L⃗

(
(A ◦ fn)(qI⃗)(l

uX)(qI⃗)− (A ◦ fn)(pI⃗)(l
uX)(pI⃗)

)
dσ⃗(I⃗) (35)

κln = −
∫
L⃗

(∫ 1

0

(A ◦ fn)(π(I⃗ , t)) dlu(t)X(π(I⃗ , t))

)
dσ⃗(I⃗). (36)
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Proof. Using id = Ps + Pu we have that∫
M

∇(A ◦ fn) ·X dρ = κsn +

∫
M

∇(A ◦ fn) · PuX dρ. (37)

Now, using Pu(x) = vu(x)lu(x) and that ∥vu(x)∥ ≡ 1, we have

∇(A ◦ fn) · PuX = vu · ∇(A ◦ fn)luX =
d

dvu
(A ◦ fn)luX.

We can write the second part of (37) as∫
M

∇(A ◦ fn) · PuX dρ =

∫
L̂

∫ 1

0

(
d

dvu
(A ◦ fn)luX

)
(π(I, t)) dtdρ̂(I),

using (20) and that the conditional density along unstable manifolds is constant (the situation
would not be seriously different if it was non-constant). Then, since vu is a unit vector along I⃗,
dϕ
dvu (π(I⃗ , t)) = (vu · (qI⃗ − pI⃗))

−1 d
dtϕ(π⃗(I⃗ , t)) and so, using the definition of σ⃗ (23),∫

M
∇(A ◦ fn) · PuX dρ =

∫
L⃗

∫ 1

0

d

dt
(A ◦ fn)(π⃗(I⃗ , t)) (luX) (π⃗(I⃗ , t)) dtdσ⃗(I⃗).

Doing integration by parts on the inner integral, the right-hand side becomes∫
L⃗

(
(A ◦ fn luX)(qI⃗)− (A ◦ fn luX)(pI⃗)−

∫ 1

0

(A ◦ fn)(π⃗(I⃗ , t)) d (luX) (π⃗(I⃗ , t))

)
dσ⃗(I⃗), (38)

where the inner integral is a Stieltjes integral. By Proposition 7.2 below in Section 7 and the
fact that X is C2, we know the Stieltjes integral is well-defined and bounded. The first two
terms in 38 become κρn.

We can expand the inner integrating term on the right-hand side of (38) via the product rule
so that

d(luX)(π⃗(I⃗ , t)) = dlu(π⃗(I⃗ , t))X(π⃗(I⃗ , t)) + (luDXvu)(π(I⃗ , t)) vu · (qI⃗ − pI⃗) dt. (39)

The first term in (39) gives κln when separated into its own integral; by rewriting back in terms
of the original SRB measure ρ, the second term in (39) gives κXn , as required.

Note that all the integrands in (34–36) are bounded, and by Proposition 4.4, σ⃗ is a finite
measure. As a result, the terms κXn , κρn, κln are finite and our separation of them is valid.

As usual in uniformly hyperbolic systems, the stable contribution κsn decays exponentially as
n→ ∞:

Proposition 5.2. There exists a constant C such that for all n ∈ N,

|κsn| ≤ C∥X∥L∞∥A∥C1µn.

Proof. We have that luEs ≡ 0, and that Es ⊂ Cs and Eu ⊂ Cu are uniformly transverse.
Since ∥vu∥, luvu ≡ 1 this means that ∥lu∥ is bounded by some constant Cl. Hence, considered
pointwise, ∥Ps∥ = ∥ id−vulu∥ ≤ 1 +Cl. Thus, using that DfnPs is in the stable cone for all n,

|κsn| ≤ sup |∇(A ◦ fn)PsX| = sup |(∇A) ◦ fnDfnPsX| ≤ ∥A∥C1µn(1 + Cl)∥X∥L∞ .

as required.
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6 Decay of κXn
One of the contributions to the susceptibility functions, κXn , decays exponentially in n if the
vector field luDXvu has decay of correlations, which obtains if it lies in the Banach space H
from Proposition 3.1. In this section we will show this is the case:

Proposition 6.1. There exists a constant C such that for all n ∈ N, X ∈ C2, A ∈ C1,

|κXn − κX∞| ≤ C∥X∥C2∥A∥C1ξn,

where
κX∞ = −

∫
M
A dρ

∫
M
lu(DX)(vu) dρ.

Since ρ lies in H (see the Appendix) the main step is to show that lu(DX)(vu) is a bounded
multiplier of functions in H. Since DX ∈ C1 this means we must show that lu and vu are
bounded multipliers:

Lemma 6.2. There exists C such that for W a C1 tensor field,

∥luWvuϕ∥H ≤ C∥W∥C1∥ϕ∥H.

We will need to characterise the regularity of the unstable vector and covector bundles, and
in particular where and how big their jumps are. To do this, we will construct piecewise constant
functions {v(β)}β∈N and {l̂(α)}α∈N which converge to covariant vector bundles as β, α→ ∞. The
following propositions achieve this.

For concision let us define νβ(x) := µβ(f
β(x))λβ(x)

−1, which is bounded by µβλ−β .

Lemma 6.3. Suppose v(0) is a unit vector field on M such that v(0) ∈ Cu. Then, there exists a
constant C such that for all β ∈ N,∣∣Dxf

βv(0)(x)/∥Dxf
βv(0)(x)∥ − vu(fβ(x))

∣∣ ≤ Cνβ(x). (40)

Proof of Lemma 6.3. Because v(0), vu ∈ Cu, they are both transverse to stable directions: as a
result, there exist constants C, c independent of a, b such that for some scalar field ∥k(x)∥ ≥ c
we have v(x) := a(x)− k(x)vu(x) lies in the unstable cone and ∥v(x)∥ ≤ C. Then,

(Dxf
βv(0))(x) = k(x)Dxf

βvu(x) +Dxf
βv(x),

and in particular,

∥Dxf
βv(0)(x)− k(x)Dfβvu(x)∥ ≤ ∥Dxf

βv(x)∥
≤ |µβ(fβ(x))|∥v(x)∥
≤ C|µβ(fβ(x))| ≤ Cµβ .

Furthermore
∥k(x)Dfβvu(x)∥ ≥ c|λβ(x)| ≥ cλβ .

It is not hard to show that
ψ

∥ψ∥ − χ
∥χ∥ = ∥ψ∥−1

(
ψ − χ+ (∥χ∥ − ∥ψ∥) χ

∥χ∥

)
,

so using the reverse triangle inequality,∥∥∥ ψ
∥ψ∥ − χ

∥χ∥

∥∥∥ ≤ ∥ψ∥−1 (∥ψ − χ∥+ |∥χ∥ − ∥ψ∥|) ≤ 2∥ψ∥−1∥ψ − χ∥.

From this we have, recalling that vu(fβ(x)) = Dxf
βvu(x)/∥Dxf

βvu(x)∥, that∥∥∥∥∥ Dxf
βv(0)(x)

∥Dxfβv(0)(x)∥
− vu(fβ(x))

∥∥∥∥∥ ≤ 2∥Dxf
βvu(x)∥∥k(x)−1Dxf

βv(x)∥

≤ 2c−1C|λ−β(x)µβ(fβ(x))|,

as required.
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Lemma 6.4. Suppose v(0) is a locally constant unit vector field on M\S such that v(0) ∈ Cu and
let v(β)(fβ(x)) := Dxf

βv(0)(x)/∥Dxf
βv(0)(x)∥ be unit vector fields on β also. Then, v(β) → vu

uniformly, and there exists a constant C such that∣∣v(β+1)(x)− v(β)(x)
∣∣ ≤ 2Cνβ(f

−β(x))

with v(β) piecewise constant on all final cylinders of length β.

Proof. From the previous lemma,

∥v(β)(x)− vu(x)∥ ≤ Cνβ(f
−β(x)),

and by applying the triangle inequality to v(β)(x) − v(β+1)(x) the equation holds. On a final
cylinder of length β the constant initial vector field v(0) is pushed forward by the Jacobian of
fβ , which is constant on the cylinder, proving the last claim.

Let us define a unit unstable covector bundle l̂u ∝ lu such that ∥l̂u∥ ≡ 1 and l̂u · e1 > 0. A
similar result holds for the left eigenfunctionals.

Lemma 6.5. Suppose l̂(0) is a locally constant covector field on M\f(S) such that l̂(0) ∈ Cs and
let l̂(α)(f−α(x)) := (Dxf

−α) ∗ l̂(0)(x)/∥(Dxf
−α) ∗ l̂(0)(x)∥ be unit vector fields on M also. Then,

l̂(α) → l̂u uniformly and there exists a constant C such that∣∣∣l̂(α)(x)− l̂(α+1)(x)
∣∣∣ ≤ 2Cνα(x).

with l̂(α) piecewise constant on all initial cylinders of length α+ 1.

The cylinders must be of length α+1 rather than α as might be expected simply as a result
of the fact that the stable cone is discontinuous across the critical line (see its definition 8 and
Figure 1).

The final ingredient needed to prove Lemma 6.2 is the following complexity bound:

Lemma 6.6. There exists C and ζ < 1 such that for all n ∈ N∑
i∈Σn:Ob

i ̸=∅

sup
x∈Ob

i

νn(x) ≤ Cζn. (41)

Proof. Since |Ob
i | ≤ 2i, this holds simply if 2λ−1µ < 1, which is the case on all parameters (a, b)

we consider.

Let us remark that, as is standard in thermodynamical formalisms, we would generically
expect the topological pressure for the SRB measure potential to be zero, which is to say that

lim
n→∞

1

n
log

∑
i∈Σn:Ob

i ̸=∅

sup
x∈Ob

i

|λn(x)−1| = 0.

This would imply Lemma 6.6 for ζ ∈ (µ, 1).

Proof of Lemma 6.2. From Lemmas 6.4–6.5 we have that

vu = v(0) +

∞∑
β=1

v(β+1) − v(β), (42)

l̂u = l̂(0) +

∞∑
β=0

l̂(β+1) − l̂(β), (43)

for appropriate vector fields v(0) ∈ C1(M), l̂(0) ∈ C1(M\f(S)), which we can choose to be
piecewise constant on the connected components of their domains. This convergence occurs in
L∞.
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Now, we expect that (again in L∞, recalling that l̂vu, l̂(β)v(β) ≥ c for some c)

luWvu =
l̂uWvu

l̂uvu
= lim
α,β→∞

t(α,β),

where

t(α,β) :=
l̂(α)Wv(β)

l̂(α)v(β)
.

We will now show that as α, β → ∞, the t(α,β), considered as multiplication operators on H,
has a unique, bounded limit. The way we will do that is by writing

t(α̂,β̂) = t0,0 +

α̂−1∑
α=0

(t(α+1,0) − t(α,0)) +

β̂−1∑
β=0

(t(0,β+1) − t(0,β))

+

α̂−1∑
α=0

β̂−1∑
β=0

(t(α+1,β+1) − t(α+1,β) − t(α,β+1) + t(α,β))

and showing these series are exponentially convergent as multiplication operators on H.
From Lemma 6.4 we have that any for any i ∈ Σβ , our v(k), k ≤ β is constant on the final

cylinder Oe
i . Similarly from Lemma 6.5, for any j ∈ Σβ+1 we have that any l̂(k), k ≤ β is constant

on the final cylinder Ob
j . The functions t(α,β), being functions of l̂(α), v(β) and a C1 vector field

W , can therefore be written as follows:

t(α,β) =
∑
i∈Σβ

∑
j∈Σg+1

1Oe
i ∩Ob

j
t(β)|Oe

i ∩Ob
j
, (44)

where the restriction of t(α,β) in the summands is C1 with a C1 extension ti,j(α,β) to the whole of
M.

Now,

t(α,β+1) − t(α,β) =
l̂(α)v(β) l̂(α)W (v(β+1) − v(β))− l̂(α)W(β) l̂(α)(v(β+1) − v(β))

l̂(α)v(β+1) l̂(α)v(β)
. (45)

Since l̂(α)v(β) ≥ c and ∥l̂(α)∥, ∥v(β)∥ = 1 for all α, β ∈ N, we have that, for a constant C ′

independent of α, β, i, j, the extension of t(0,β+1) − t(0,β) has

∥ti,j(0,β+1) − ti,j(0,β)∥C1 ≤
2∥W∥C1 supx∈Ob

i
∥v(β+1) − v(β)∥

c2

≤ C ′ ∥W∥C1 sup
x∈Ob

i

νβ(x). (46)

Now, from (44), we find

∥(t(0,β+1) − t(0,β))ϕ∥H ≤
∑

i∈Σβ+1

∑
j∈Σ

∥∥∥(t(0,β+1) − t(0,β))|Ni,j
1Oe

i ∩Ob
j
ϕ
∥∥∥
H
.

From (46), Lemma 3.2 and Lemma 3.3 we find

∥(t(0,β+1) − t(0,β))ϕ∥H ≤
∑

i∈Σβ+1,Oe
i ̸=∅

∑
j∈Σ,Ob

j ̸=∅

sup
x∈Ob

i

νβ(x)∥W∥C1C#∥ϕ∥H,

from which Lemma 6.6 implies that for some ζ < 1,

∥(t(0,β+1) − t(0,β))ϕ∥H ≤ Cζβ∥W∥C1∥ϕ∥H.
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Similarly, we find
∥(t(α+1,β) − t(α,0))ϕ∥H ≤ Cζα∥W∥C1∥ϕ∥H.

Finally, we must bound the norm of the double differences t(α+1,β+1)−t(α+1,β)−t(α,β+1)+t(α,β).
Using (45) we find that

t(α+1,β+1) − t(α+1,β) − t(α,β+1) + t(α,β)

=
(l̂(α+1)v(β) l̂(α+1) − l̂(α)v(β) l̂(α))W (v(β+1) − v(β))− (l̂(α+1)Wv(β) l̂(α+1) − l̂(α)Wv(β) l̂(α))(v(β+1) − v(β))

l̂(α+1)v(β+1) l̂(α+1)v(β) l̂(α)v(β+1) l̂(α)v(β)

which implies that

∥ti,j(α+1,β+1) − ti,j(α+1,β) − ti,j(α,β+1) + ti,j(α,β)∥C1(Ni,j)

≤
8∥W∥C1 supx∈Ob

i
∥v(β+1) − v(β)∥ supx∈Oe

j
∥l̂(α+1) − l̂(α)∥

c4

≤ C ′ ∥W∥C1 sup
x∈Ob

i

νβ(f
β(x)) sup

x∈Ob
j

να(x). (47)

Following through the same argument we find that

∥(t(α+1,β+1) − t(α+1,β) − t(α,β+1) + t(α,β))ϕ∥H ≤ Cζα+β∥W∥C1∥ϕ∥H,

which is absolutely convergent as α, β → ∞. Finally, it is by this point clear that t(0,0) is
appropriately bounded and piecewise C1, so that also

∥t0,0ϕ∥H ≤ C∥W∥C1∥ϕ∥H.

Hence, we have that t(α,β) has a limit considered as a multiplication operator on H, which
by the usual argument must be luWvu, and so there exists a constant C such that

∥luWvuϕ∥H ≤ C∥ϕ∥H,

as required.

Proof of Proposition 6.1. DX is a C1 tensor field if X is C2, and so from Lemma 6.2,

∥lu(DX)vuρ∥H ≤ C∥DX∥C1∥ρ∥H ≤ C ′∥X∥C2 .

Furthermore, lu(DX)vu is bounded and ρ is a finite measure, so lu(DX)vuρ is a (signed) Borel
measure. The lemma then follows from an application of Proposition 3.1.

7 Decay of remaining terms
Of the remaining terms, κln and κρn contain contributions from the jumps in Df along the
singularity sets S. Our claim is that these contributions decay exponentially as we send n→ ∞.
This relies on Conjecture 2.2 about the behaviour of the slice measure ρS on the singular set S
as we push it forward under f .

We will henceforth assume C to be a constant dependent only on f .

7.1 Decay of κl
n

In this section we will prove the following proposition:

Proposition 7.1. The term κln can be written as

κln = −
∞∑
m=0

∫
S
(A ◦ fn−m) (lsX) ◦ f−m lu(x−)vs(x+)(e1 · vu)µm(y+) dρS .
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Proposition 4.3 shows that lu is uniquely defined at almost all points along ℓS . Our results
would still carry through if it were not the case, but it makes notation easier, and furnishes an
interesting contrast with the one-dimensional case, where for a certain (dense) set of parameters
the critical point is pre-periodic.

We also would like the following result:

Proposition 7.2. There exists a constant C such that for any line segment I ⊂ M,∫
I

∥dlu∥ ≤ C.

Proof of Proposition 7.2. First we will prove that this integral makes sense. Recall that lu =
l̂u/(l̂uvu). We start by proving this lemma for l̂u.

Recall the definition of the l̂(α) in Lemma 6.5. We will show that these form a uniformly
bounded Cauchy sequence in the space of functions of bounded total variation on I, of which l̂u
is the natural limit.

From Lemma 6.5, l̂(α) is piecewise constant on cylinders of length α + 1. Consequently, the
total variation of l̂(α) on I is zero when α+1 ≤ m, and the difference l̂(α+1)− l̂(α) is bounded by∫

I

∥∥∥d(l̂(α+1) − l̂(α))
∥∥∥ =

∑
π(I,t)∈f−β(S),β≤α+2

∣∣∣(l̂(α+1) − l̂(α))(π(I, t+))− (l̂(α+1) − l̂(α))(π(I, t−))
∣∣∣

≤
∑

π(I,t)∈f−β(S),β≤α+2

Cνα(π(I, t−)) + Cνα(π(I, t+)).

Since I is a line, the intersection between any cylinder and I has one connected component from
Proposition 3.4. Thus, each cylinder of length α + 2 contains no more than two points in this
sum, and each cylinder of length α therefore no more than eight. Hence, we can bound this by∫

I

∥d(l̂(α+1) − l̂(α))∥ ≤ 8C
∑

j∈Σα:Ob
j∩I ̸=∅

sup
x∈Ob

j∩I
|να(x)| ≤ Cζp,

using Lemma 6.6 in the last inequality. Thus, l̂(α) is a Cauchy sequence converging to l̂u in the
space of total variation on I, and ∫

I

∥dl̂u∥ ≤ C sup
x∈I

νm(y)

for some C independent of I.
The same argument using Lemma 6.4 holds for vu, and since (l̂u, vu) 7→ l̂u/(l̂uvu) is uniformly

Lipschitz, we get the same result for lu.

This can be combined with the following lemma, which bounds Stieltjes integrals with respect
to lu of vector fields B, which may be relatively large in unstable directions:

Lemma 7.3. For any local unstable manifold I⃗ ∈ L⃗ and any continuous vector field B,∣∣∣∣∫
I⃗

dluB

∣∣∣∣ ≤ ∫
I⃗

∥dlu∥ sup
I⃗

∥PsB∥.

We will use the following result to prove this:

Lemma 7.4. For any I⃗ ∈ L⃗, vector v and x, y, z ∈ I⃗,

(lu(x)− lu(y))v = (lu(x)− lu(y))Ps(z)v,
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Proof. Using the decomposition id = Pu + Ps we have for any vector v and x, y, z ∈ I⃗ that

(lu(x)− lu(y))v = (lu(x)− lu(y))(Pu(z)v + Ps(z)v).

Now,

(lu(x)− lu(y))Pu(z)v = (lu(x)vu(z)− lu(y)vu(z))lu(z)v = (lu(x)vu(x)− lu(y)vu(y))lu(z)v = 0

since vu is constant along local unstable manifolds, and luvu ≡ 1.

Proof of Lemma 7.3. We have that the Stieltjes integral can be bounded in terms of partitions
P of I⃗ as: ∣∣∣∣∫

I⃗

dluB

∣∣∣∣ ≤ sup
P

∑
[xi,xi+1]∈P

sup
zi∈[xi,xi+1]

|(lu(xi)− lu(xi+1))B(zi)|.

By Lemma 7.4 we can say

|(lu(xi)− lu(xi+1))B(zi)| = |(lu(xi)− lu(xi+1))Ps(zi)B(zi)|
≤ ∥lu(xi)− lu(xi+1)∥∥(PsB)(zi)∥,

so ∣∣∣∣∫
I⃗

dluB

∣∣∣∣ ≤ sup
P

∑
[xi,xi+1]∈P

∥lu(xi)− lu(xi+1)∥ sup
I⃗

∥PsB∥

=

∫
I⃗

∥dlu∥ sup
I⃗

∥PsB∥

as required.

This allows us to prove Proposition 7.1:

Proof of Proposition 7.1. If we define for any segment J⃗ ⊂ I⃗ ∈ L̂ that

ψm,n(J⃗) :=

∫ 1

0

dlu(π(J⃗ , t))(DfmX A ◦ fn)(f−m(π(J⃗ , t))),

then we have that
κln = −

∫
ψ0,n(I⃗)

dρ̂(Ip,q)

vu · (q − p)
. (48)

Now, since lu(x)Df−1(x)f = (λ1l
u)(f−1(x)) and Df and λ1 are constant on f−1(I⃗),

ψm+1,n(I⃗) =

∫ 1

0

(dluλ1)(f
−1(π(I⃗ , t)))(DfmX A ◦ fn)(f−m−1(π(I⃗ , t)))

= λ1(uI⃗))ψm,n(f
−1(I⃗))

for an arbitrary choice of point uI⃗ ∈ f−1(I⃗).
Because ψm,n are Stieltjes integrals with respect to lu, we can decompose over subsegments

of I⃗. If I⃗ decomposes as J⃗∪{s}∪ J⃗ ′ with s := π(I⃗ , t∗) the point of intersection between segments
J⃗ , J⃗ ′,

ψm,n(I⃗) = ψm,n(J⃗) + ∆I⃗ [l
u](s)(DfmX A ◦ fn)(f−m(s)) + ψm,n(J⃗

′),

where ∆I⃗ [l
u](s) := lu(π(I⃗ , t∗+))− lu(π(I⃗ , t∗−)) is the jump in lu along (and in the direction of) I⃗

at s.
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From Lemma 4.5 we then have∫
L⃗
ψm,n(I⃗) dσ⃗(I⃗) =

∫
L⃗

∑
J⃗=M±∩I⃗ ̸=∅

λ1(uJ⃗)ψm,n(f(J⃗)) dσ⃗(I⃗)

=

∫
L⃗

∑
J⃗=M±∩I⃗ ̸=∅

ψm+1,n(J⃗) dσ⃗(I⃗)

=

∫
L⃗

ψm+1,n(I⃗)−
∑

s∈I⃗∩ℓS

∆I⃗ [l
u](s)(DfmX A ◦ fn)(f−m(s))

 dσ⃗(I⃗). (49)

By Proposition 7.2 and Lemma 7.3, for σ⃗-almost any I⃗ ∈ L⃗

|ψm,n(I⃗)| ≤
∫
I

∥dlu∥ sup
I

∥Ps(DfmX A ◦ fn)(f−m(x))∥

≤ C∥A∥∞ sup
I

∥DfmPsX∥

≤ C∥A∥∞µm∥X∥∞,

which converges to zero as m→ ∞. From this, (48) and (49) we can conclude inductively that

κln =

∫
L⃗

∞∑
m=1

∑
s∈I⃗∩ℓS

∆I⃗ [l
u](s)(DfmX A ◦ fn)(f−m(s))dσ⃗(I⃗).

Note that the inner sum will contain at most one point.
The argument in Lemma 7.3 tells us that, when I⃗ points from M− into M+,

∆I⃗ [l
u](s)(DfmX A ◦ fn)(f−m(s)) = (lu(s+)− lu(s−))Ps(s+)(DfmX A ◦ fn)(f−m(s)).

Since Ps(s+)Df−m(s)f
m = vs(s+)µm(s+)l

s(s+) and luvs ≡ 0, and using Lemma 4.2, we obtain
the requisite result.

7.2 Decay of κρ
n

Proposition 7.5. The term κρn can be written as

κρn =

∞∑
m=1

∫
S
(A ◦ fn+m) (luX) ◦ fm (λ−1

m (x+)− λ−1
m (x−)) v

u · e1 dρS

Proof. Let

χm,n(I⃗p,q) = (luX A ◦ fn)(fm(q))λ−1
m (q)− (luX A ◦ fn)(fm(p))λ−1

m (p).

From the definition of κρn in Proposition 5.1, it is clear that

κρn =

∫
L⃗
χ0,n dσ⃗. (50)

Using Lemma 4.5, we have that∫
L⃗
χm,n dσ⃗ = (A ◦ fn luX)(fm+1(pJ⃗))λ

−1
m (pJ⃗)

)
dσ⃗(I⃗).

Setting uJ⃗ = fp(pJ⃗) we can combine λ1(uJ⃗)λm(pJ⃗) = λm+1(pJ⃗), and similarly for qJ⃗ , keeping
note of the fact that the endpoints written pJ⃗ , qJ⃗ are considered as limits of J⃗ going to the
endpoints.

The points pI⃗ and qI⃗ will be among the boundary points of the preimages of the descendants
of a local unstable manifold I⃗. Another possible boundary point, counted once as a starting
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point and once as an endpoint, will be where I⃗p,q intersects the singular line ℓS . With the
correct signs, this leaves us that∫

L⃗
χm,n dσ⃗ =

∫
L⃗
χm+1,n +

∑
s∈I⃗∩ℓS

(A ◦ fn luX)(fm+1(s))∆I⃗ [λ
−1
m+1](s) dσ⃗. (51)

Now |χm,n| ≤ Cλ−m∥X∥∞∥A∥∞ which converges uniformly to zero as m → ∞, so we can
combine (50) and (51) to obtain

κρn =

∞∑
m=1

∫
L⃗

∑
s∈I⃗∩ℓS

(A ◦ fn luX)(fm+1(s))∆I⃗ [λ
−1
m+1](s) dσ⃗

An application of Lemma 4.2 then gives us the required result.

7.3 Putting terms together
The following result is a simple application of Conjecture 2.2, summing up the terms in the
previous two propositions, and rewriting κρ∞ and κl∞ as above.

Proposition 7.6. Under Conjecture 2.2, there exists C > 0, c ∈ (0, 1) such that

|κρn − κρ∞| < Ccn∥A∥C1∥X∥B (52)

and
|κln − κl∞| < Ccn∥A∥C1∥X∥B (53)

where
κρ∞ = −ρ(A)

∫
L⃗

(
(luX)(qI⃗)− (luX)(pI⃗)

)
dσ⃗(I⃗)

and
κl∞ = −ρ(A)

∫
L⃗

∫
I⃗

dluX dσ⃗(I⃗)

Proof of Proposition 7.6. Notice that by applying Proposition 7.5 with A ≡ 1 we have that

κρ∞ = ρ(A)

∞∑
m=1

∫
ℓS

(luX) ◦ fm (λ−1
m (c+)− λ−1

m (c−)) dρS(c).

We can then apply the main conjecture (11) to the expression in Proposition 7.5 with B = luX,
Γ = 1, giving that

|κρn − κρ∞| ≤
∞∑
m=1

C∥A∥C1∥lsX∥Bcnθm ≤ C∥A∥C1∥X∥B(1− θ)−1cn,

giving (52).

In a similar fashion, by applying Proposition 7.1, we have that

κl∞ = −ρ(A)
∞∑
m=0

∫
S
(lsX) ◦ f−m lu(x−)vs(x+)µm dρS .

To prove (53) we can split the expression in Proposition 7.1 into two parts: one with m ≥ n,
which we can bound trivially using the decay in µm, and one with m < n, to which we apply
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(12) with B = lsX, Γ(c) = −lu(c−)vs(c+) for c ∈ ℓS (which can be extended away from the
critical line e.g. by Γ(x, y) = Γ(0, y)). This gives

|κln − κl∞| ≤
n−1∑
m=1

C∥A∥C1∥lsX∥B∥ − lu(x−)v
s
+∥Bcnθm+

∞∑
m=n

2∥A∥∞∥lsX lu(x−)v
s
+∥∞∥µm∥∞ρS(1)

≤ C∥A∥C1∥X∥B(1− θ)−1cn + C∥A∥∞∥X∥∞µn,

yielding the required exponential decay.

Of course, it is necessary to show that the limit of κn as n→ ∞ is in fact zero:

Proposition 7.7.
κX∞ + κρ∞ + κl∞ = 0.

Proof. Apply Proposition 5.1 in reverse, setting A ≡ 1.

At last, we can prove the main theorem.

Proof of Theorem 2.3. From Propositions 5.2, 6.1 and 7.6, we have

|κsn + (κXn − κX∞) + (κln − κl∞) + (κρn − κρ∞)| ≤ Ccn∥A∥C1∥X∥C2

for some c < 1 and C > 0. Then, applying Propositions 5.1 and 7.7, we have what is required.

A Proofs of various propositions

A.1 Proof of Proposition 3.1
Proof of Proposition 3.1. We claim the Lozi maps satisfy the conditions of [4, Theorem 2.5].
Most necessary properties already hold by assumption, but in particular, the growth of the
number of singularity curves intersecting at a single point is polynomial, as each step creates a
finite number of singularity curves, and f is a homeomorphism onto its image. As a result, there
exists a Banach space H such that the transfer operator

(Lϕ)(x) := 1x∈im f |detDf−1(x)|ϕ(f−1(x))

has spectral radius equal to 1 and has only isolated spectrum in a ball of radius strictly less
than one. The SRB measure ρ is the unique 1-eigenfunction of L, with corresponding left
eigenfunctional being total (Lebesgue) integral on M. Because the map f is mixing, this is the
only spectrum on the unit circle, and the rest must therefore be contained in a ball of radius
ξ < 1.

Hence, there exists a constant C such that for all n > 1,∥∥∥∥Lnϕ− ρ

∫
ϕ

∥∥∥∥
H

≤ Cξn∥ϕ∥H.

Supposing that ϕmm∈N are C1 test functions such that the ϕm dx converge in H to ϕ, we have,
integrating against a C1 function A, that by a change of variable∫

ALnϕm dx =

∫
(A ◦ fn)ϕm dx.

It can be seen from the definition of H in [4] that integrating against A is a bounded functional
in H. We therefore recover in the limit as m→ ∞ that∫

ALnϕ =

∫
(A ◦ fn)ϕ,

and obtain the required bound.
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A.2 Proof of Proposition 4.3
To prove Proposition 4.3 we require the following result:

Proposition A.1. The critical line ℓS intersects all fn(ℓS) transversely for n ̸= 0.

Proof. It is easy to check that the critical line ℓS lies outside the stable cone, and fnℓS lies
properly inside the stable cone for all n ≤ −1. For positive n the result obtains by applying fn
to f−nℓS and ℓS .

Proof of Proposition 4.3. Suppose this were not true.
The set of points whose forward orbit intersects ℓS more than once is

∪∞
n=1f

n(ℓS) ∩ ℓS . (54)

We know from Proposition A.1 that fn(ℓS) and ℓS always intersect transversally. Because both
these sets are piecewise curves of finite length, the number of intersection points is finite. Thus,
the countable union of these intersections (54) must be countable. If the ρS -measure of (54) is
positive, then ρS must contain atoms. By (24), this means so too must σ̂, and therefore so too
must ρ̂.

Now, suppose I ∈ L̂ is an atom of ρ̂, that is ρ̂({I}) > 0. By definition, this means that
ρ(I) > 0 also. Let s be any point in I, so I = Wu

loc(s). Now, because ρ is f -invariant and finite,
the union

∪∞
n=0f

−n(Wu
loc(s))

cannot be disjoint, and since by the properties of local unstable manifolds f−n(Wu
loc(s)) ⊂

Wu
loc(f

−n(s)) , we must have that f−n
∗
(Wu

loc(s)) ⊂ Wu
loc(s) for some n∗ ∈ N. But then

since ρ conditioned on Wu
loc(s) is proportional to the length measure, and ρ(f−n

∗
(Wu

loc(s))) =
ρ(Wu

loc(s)), we have that f−n
∗
(Wu

loc(s)) = Wu
loc(s) and so Wu

loc(s) = fn
∗
(Wu

loc(s). However, f
is a bijection that expands unstable manifolds, so this cannot happen. Thus we have a proof by
contradiction.
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