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Chaotic systems




Statistics of chaotic systems
Things we are interested in:

e Existence of chaos! (Positive Lyapunov exponents)
® Physical measures:
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Statistics of chaotic systems

® Mixing rates, statistics such as large deviations

® Response of physical measures to dynamical perturbations
(e.g. linear response)
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Tractable chaotic systems

For rigorous results, some strong geometrical constraints on the
dynamics are needed. Results in:

® 1+ € dimensions (e.g. logistic, Hénon)

e Systems with (some) hyperbolicity



Real chaotic systems

Consider the most (practically) important examples of chaotic
systems:

e Statistical mechanics (incl. non-equilibrium)
e Turbulent fluid flow
® Global climate systems
They are theoretically intractable:
™ High-dimensional with many positive Lyapunov exponents

® Non-hyperbolic.



Real chaotic systems

How to make sense of these systems?

Chaotic hypothesis (Gallavotti-Cohen '95)

The macroscopic dynamics of a (high-dimensional) chaotic system
on its attractor can be regarded as a transitive hyperbolic
(“Anosov”) evolution.

Ergo: we expect all the same nice statistics as in hyperbolic
systems.



Real chaotic systems

Relative changes in % of the SD
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However (examples from response
theory):
. 3
® Sometimes one or more of these
properties fail (e.g. Chekroun et al.

Chekroun et al., 2014

'14)
. Estimated
® Maybe more failures are obscured — e
— True

by finite data effects (Gottwald, W.
& Wouters '16)

Would like to study the (range of) validity of the chaotic
hypothesis, rigorously. . .



Globally coupled systems

“Simple complex system™: globally coupled systems of M subunits
xU) with

(J)l_f<(J)MZ¢ >11 .M

f(-; ®) chaotic, ¢ a coupling function (Kaneko '88).
Example of these are attractively coupled systems (work of LS
Young, Fernandez, Sélley, ...):



Mean-field coupled systems

Subset of these: mean-field coupled systems
where ¢(x(M, xU)) = ¢(x(M)). Write

mean-field t
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We will show these have interesting and
problematic dynamics. ..



Thermodynamic limit reduction

The xU)'s are exchangeable. So we can formulate in terms of
empirical measure of xU)s:

so that system becomes

¢n=/¢dun

Hnt1 = fc;,,/ln
This gives dynamical system in p,:
o1 = F(pn) = ffgau,tin

Taking M — oo we might expect pp to converge to a continuous
distribution.



Thermodynamic limit reduction

We can study measure dynamics using the linear transfer operator
Ls:
Lehdx ;= f*(hdx)

for h a (hyper-)function. Explicit formula

h(y)
|Df(y)I’
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Thermodynamic limit reduction

If du = hdx we have (non-linear) dynamics
hner = F(ha) = Ls, . h.

What can we say about F? The answer is in the theory of transfer
operators. . .



Transfer operators
For many maps f with exponential decay of correlations:
* [[Lellpx = 1.
® The set M of non-negative (hyper)functions integrating to
one is invariant under Ly.
® There is a smaller Banach space B on which L is

quasicompact. (Probably many such B) That is:
® The spectral radius is 1, and

® The essential (i.e. non-point) spectrum is confined to a disc of
radius strictly less than 1.

® f+— Lf has some differentiability properties, only if we
consider Ly : B — B" D B for appropriate weak space BY.




Transfer operators

If f is very nice (e.g. C% uniformly expanding):

® There is some Banach space B on which L is compact with
spectral radius 1.

® |n particular if the eigenvalues of Lf are given by
1= M| > |X2] >...0, then (e.g. Bandtlow and Jenkinson
'07)
IA| < CemeVk,

® f— Lris C™ considering Lf : B — B.



Transfer operators

F(h) =Lt 0

From the last slide, we know:
e F:BNM O is well-defined and has nice compact images
® fis C™.
* DF :BN{¢: [ ¢ =0} O is compact.



Examples of nice f's

Uniformly expanding maps of the interval:

b

If fis (piecewise) C"* (r > 0), then B = C" (among others).
If fis (piecewise) C* then B = some L>° Hardy space (i.e.
bounded analytic functions on some complex set).



Numerics for nice f's

We can approximate transfer operators of unif. exp. maps
extremely accurately using Chebyshev Galerkin methods (Wormell
'19, Bandtlow and Slipantschuk '20).

In particular, we have the following estimates of L¢ (hence F, DF,
etc.) in Hardy space B norm:

ILs — PnLePy|ls < Cem M.
~——
computable

This plus compactness of £f makes quite complex numerics
possible!



Numerical example

Consider a family of coupled systems, parametrised by t > 0
regulating coupling strength:

1 M

m=0
qr(;j;&)-l = fo, q'(1j))

Form of f, ¢ chosen to induce unimodal
dynamics in ¢, (see W. and Gottwald '19).

-0 05 0.0 0.5 Lo



Numerical example

Hénon-like attractor at high coupling strengths:

Attractor ¢ = 31, delay coords
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Hénon-like bifurcation structure:

Numerical example
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Example
A failure of linear response:

Globally coupled unif. exp. maps, M = co

0.041 A
Despite hyperbolic microscopic components!
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Is there really non-hyperbolicity afoot?



Homoclinic tangencies

We can use our fancy numerics to find a quadratic, tranverse
homoclinic tangency. (Non-rigorous for now but provable.)

t = 30.061831392296 . ..
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Homoclinic tangencies

t = 30.061831392296 . . .

= non-hyperbolicity in a mean field system! A blow for the
chaotic hypothesis.



Homoclinic tangencies

Common caveat to CH: hyperbolicity occurs “generically” rather
than universally.

But at least morally, we expect homoclinic tangencies on an open
set of parameters! (Although these may not live on the

attractors. . . )



Arbitrary dynamics
Given any C' function g : [-1,1]7 9 and € > 0, there exists a
mean-field system (with f Anosov diffeos and d-dimensional
coupling function ¢) such that

q)n+1 = g(q)n) =+ €.

In fact, there is a map F*° : B (9 semiconjugate to g such that for
any s <r,
|F—F®|lcs <e




Arbitrary dynamics

In progress: “any Ck-open property of a diffeomorphism (e.g.
existence of a blender) holds in a non-empty, C*°-open set of
globally coupled systems' thermodynamic limits".

Conclusion: cannot assume macroscale dynamics have
hyperbolicity (or anything nice) a priori, at least in globally coupled
systems.



Finite size

In practice, the number of coupled maps is likely to be finite,
perhaps quite small.

Figure: http://mri-q.com

What happens at finite size?



Our mean-field has

| =
M=
S

m=1

where the X,Sm) sample the thermodynamic
measure limit p,.

By the central limit theorem we expect

¥, = /¢dun —n

where (,, is a Gaussian process. Combining this

with
Hnt1 = fc;,,ﬂn

we obtain a stochastic process in our measure

dynamics.

Finite size



Finite size
Gaussian noise induces all the nice statistical properties that
Anosov systems have, e.g. linear response:

Globally coupled unif. exp. maps
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So, in practice, what we see at the macroscale are (potentially
non-hyperbolic) dynamics plus noise. Mystery solved??



Conclusion

Some questions for mean-field systems:
® How to treat lower-regularity systems (e.g. Ck subsystems,
piecewise expanding?)
® What can we say about more realistic couplings (e.g.
attractive/repulsive)?



