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Statistical properties of chaotic systems

Consider a chaotic dynamical system 

Such systems typically have a physical measure   , i.e., for any 
observable    and almost any initial value     , 

Time average

ẋ = f(x), x(0) = x0.
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Statistical properties of chaotic systems

Consider a family of chaotic dynamical systems 

Such systems typically have physical measures    , i.e., for any 
observable    and almost any initial value     , 

ẋ✏ = f(x✏, ✏), x✏(0) = x0.
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Statistical properties of chaotic systems

Consider a family of chaotic dynamical systems 

Such systems typically have physical measures    , i.e., for any 
observable    and almost any initial value     , 

ẋ✏ = f(x✏, ✏), x✏(0) = x0.
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How does         vary with   ?hAi✏ ✏
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Linear response theory

Hypothesis: Maybe (for small epsilon) differentiably: 

hAi✏ ⇡ hAi0 + ✏hAi00, ✏ ⌧ 1
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Linear response theory

Hypothesis: Maybe (for small epsilon) differentiably: 

Magic: Both coefficients can be calculated using only information 
about the statistics of the unperturbed system (         ) via formulae 
such as the fluctuation-dissipation theorem: 

This has met with qualified success in climate science (work of A. 
Majda, A. Gritsun, V. Lucarini, Cooper & Haynes 13…)

hAi✏ ⇡ hAi0 + ✏hAi00, ✏ ⌧ 1
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Linear response theory - logistic map

But: chaotic maps may not have linear response. 
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Linear response theory - logistic map

But: chaotic maps may not have linear response. 

Case in point: the logistic map
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Linear response theory - logistic map

But: chaotic maps may not have linear response. 

Case in point: the logistic map

xn+1 = (3.8 + ✏)xn(1� xn)
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Linear response - time series

Physical measures are typically estimated by running long time 
series (i.e. Monte Carlo).  
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Linear response - time series

Physical measures are typically estimated by running long time 
series (i.e. Monte Carlo).  

Perhaps it’s a case of not enough data?
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Test for linear response

How to see (statistically) if you have linear response: 
Chaotic systems often obey a central limit theorem: 

ĀN,✏ :=
1

N

Z N

0
A(x✏(t))dt = hAi✏ +

�✏(A)p
N

⇠, ⇠ ⇠ N(0, 1)



The University of Sydney  13

Test for linear response

How to see (statistically) if you have linear response: 
Chaotic systems often obey a central limit theorem: 

We run the system for different values of the parameter epsilon, 
and try and test the model for fit:

ĀN,✏ :=
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Effect of data size

104 105 106 107

N

10−6

10−5

10−4

10−3

q

104 105 106 107 108

N

10−6

10−5

10−4

10−3

q̂

logistic map doubling map

M = 20, ✏max = 4⇥ 10�5



The University of Sydney  15

Effect of perturbation size
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Conclusions from the logistic map

– It takes a lot of data (                         ) to reliably see the 
absence of linear response for global observables 

– Using larger perturbations (i.e. bigger epsilon) makes this easier 
to see 

– It is possible to reduce this using observables with localised 
support, but these require prior knowledge of the structure of 
the system

NM ⇡ 50/✏max
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What about approximate linear fits?
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What about approximate linear fits?

Trying to use fluctuation-dissipation theorem where linear response 
theoretically fails gives poorly-conditioned, meaningless results (for 
logistic map).
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Further directions for research

– Application of linear response test to practically relevant 
systems  

– Investigation of fluctuation-dissipation theorem 
– Possible paths to linear response in complex systems (e.g. noise 

limits, strong versions of Gavalotti-Cohen hypothesis)
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Chekroun et al. ‘14


