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Setting

Consider a smooth family ofmixing chaotic dynamical systems

Xp = T%(xp—1), with physical invariant measures p°.

The physical measures encode long-term ergodic behaviour of x,.
Mathematically, for observables A and Lebesgue-a.e. xg,
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Linear response theory

“ES[A]" = / A(x) dpf(x)

Linear response theory (LRT) answers: What is &L p°?
(e.g. for Taylor approximations)
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Linear response theory

“ES[A]" = / A(x) dpf(x)

Linear response theory (LRT) answers: What is &L [ Adp*?
(e.g. for Taylor approximations)

... supposing differentiability of € — p°!

When and why do we have differentiability?



Decay of correlations

Classic result in dynamics (usually expect to be true):

Exponential decay of correlations

There exists # < 1, C such that if A, B € C}(M,R) then
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Exponential decay of correlations

There exists § < 1, C such that if © = Bp and A, B € C}(M,R)
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Decay of correlations
Classic result in dynamics (usually expect to be true):

Exponential decay of correlations

There exists § < 1, C such that if u = Bp and A, B € C}(M,R)
then
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Decay of correlations
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» Diff'ble function B in u = Bp can represent some imperfect
information of the system’s state.

» Decay of correlations = this information will be lost over time

» How much can we improve our knowledge if we improve our
information?



Sense of talk

Two questions:
A. Prediction using perfect (or very good) observations.

B. Linear response (for general systems)

We will show that the two are governed by the same phenomenon:
“conditional decay of correlations".



A note on physical measures

A physical measure is typically an SRB measure, i.e. has the
following geometrical property:

conditional measure has a density



Prediction: setup

System x, € M C R? undergoing dynamics x,11 = T (xy).
At certain times t we make an observation

zt = H(x¢) + & € R

N

H:RY = Re . ,
~ /
e < d typically: partial obs ¢ N(0,02)



Prediction: filter

» Given z; = H(x¢) + & we want to estimate x, for n > t.

» Standard to do this probabilistically, i.e. distribution of likely
Xn

» Many options: particle filters, Kalman filters, grid methods. . .

» All approximate a Bayesian filter



Bayesian filter: assimilation step

Let's do one assimilation step at t = 0.
» Suppose we are given prior distribution of xg 1 .

» Then we can assimilate observation zp to get posterior:
dug (x) =P (Xo = x| HX) + &= z0), Xo ~ pg
» If £ has pdf p, then Bayes' law says

A (<) = Z,% palzo — H(x)) du™(x)



Bayesian filter: assimilation step

Let's do one assimilation step at t = 0.
» Suppose we are given prior distribution of xg 1 .

» Then we can assimilate observation zp to get posterior:
dug (x) =P (Xo = x| HX) + &= z0), Xo ~ pg
» If £ has pdf p, then Bayes' law says

A () = Z, polao = H(x)) die” ()

const. C1 function old measure



Bayesian filter: assimilation step

Let's do one assimilation step at t = 0.
» Suppose we are given prior distribution of xg 1 .

» Then we can assimilate observation zp to get posterior:
dug (x) =P (Xo = x| HX) + &= z0), Xo ~ pg
» If £ has pdf p, then Bayes' law says

A () = Z, polao = H(x)) die” ()

const. C1 function old measure

How to choose initial posterior 11 ? Natural choice is p.



Bayesian filter: assimilation step
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Bayesian filter: prediction

» Given posterior N(J)r we can predict future:
pn = T ug
» If ug = p then
pn = T(Z;  po(z — H(-))p)
So, as n — o0,

/Adﬂn - /AO T" Z; 'py(z = H(-))dp — /Adp

i.e. our predictions i, revert to the “no information" distribution p
exponentially fast.



Bayesian filter: prediction

Bayesian posterior, 0 =0.1
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Bayesian filter: prediction

What happens if we improve our observations?

Bayesian posterior, 0 =0.03

0.4 - Hobs = — 0.02
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Bayesian filter: prediction

Predicted expectations of A(x, y) = 2x with o-noise
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Zero noise limit
Zero-observation-noise limit?

As o — 0,
po(z = H(x)) = 3(z — H(x))

So posterior turns into conditional measure

dpi (x) = Z5'8(z — H(x)) dp(x) = dp(x | H(x) = 2)

Bayesian posterior, 0 =0
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Zero noise limit
With very careful numerics we can make a rigorous sample:

Predicted expectations of A(x, y) = 2x with o-noise

—}— Perfect obs.
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Zero noise limit
With very careful numerics we can make a rigorous sample:

Predicted expectations of A(x, y) = 2x with o-noise
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Zero noise limit
With very careful numerics we can make a rigorous sample:

Predicted expectations of A(x, y) = 2x with o-noise
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Call this conditional decay of correlations (CDoC).
CDoC means that perfect, partial observations lose utility over
time.



Zero noise limit

What can we say mathematically?
» If line z = H(x) is a stable manifold or invariant submanifold
then u - p.
» But this is non-generic!
P If system is conservative then CDoC expected

» If system is dissipative, u™ is too irregular to prove things
(e.g. is Cantor measure). ..



Zero noise limit

What can we say mathematically?
» If line z = H(x) is a stable manifold or invariant submanifold
then u - p.
» But this is non-generic!
> If system is conservative then CDoC expected

» If system is dissipative, u™ is too irregular to prove things
(e.g. is Cantor measure). ..
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Conditional decay of correlations
Study baker’s map on [0, 1]%:

T(Xay) = (kX mod 1, Vkx] (y))

with v; non-overlapping contractions.
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Conditional decay of correlations

Theorem (W. '22)

The conditional measure p = p(- | ¥(y) — x = 0) is well-defined.
Furthermore, if i)' # 0 and either

» The {v;} are analytic and not conjugate to linear.
» The {v;} are linear with same contraction rate, and ¢)" # 0

then there exists 6 < 1 such that
‘/Ao T”du—/Adp/d,u‘ < CO"|A|| cr-

Super generic: just need to break algebraic structure (linearity)



Conditional decay of correlations

» Conjecture that CDoC occurs if no obvious reason not to
P i.e. it occurs for almost every observations H, z.

» This gives a hard limit on utility of improving observation
accuracy.

» CDoC appears to b slowly than regular decay of correlations,
maybe dependent on dimension of .

» Proving CDoC looks to be hard!



Bayes filter: repeated observations

What if we make M > 1 observations?
» We can think of it as a single observation at the final time

(HHHo T™™M Ho T~ ™ .. Ho T~™):RY - RM,

» If eM > 2d then Takens embedding theorem says we know x
exactly = exact info for all time!

» Expect CDoC at least if eM < # positive Lyapunov
exponents (can be large for multiscale systems)

» Blender-like properties might imply CDoC for intermediate eM



Linear response (time-independent version)

Given family of maps
Te(x)=T(x)+eX(T(x))+...

Linear response asks: when is € — p° differentiable?
Given formally by sum

d o0
— [Adp" =Y &,
ds/ P nzz:oﬁ

where k, are susceptibiility coefficients that may or may not blow
up. ..



Linear response in theory

Whe can prove that € — p° is:
» Differentiable (C*) in conservative (Kubo '66) and stochastic
(Hairer and Majda '10) systems

» Differentiable (C*°) in Axiom A (uniformly hyperbolic
dissipative chaos): Ruelle '97, ...
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Linear response in theory

Whe can prove that € — p° is:
» Differentiable (C*) in conservative (Kubo '66) and stochastic
(Hairer and Majda '10) systems
» Differentiable (C*°) in Axiom A (uniformly hyperbolic
dissipative chaos): Ruelle '97, ...

> At best C%5" Holder in logistic maps (Baladi and others

1 1
08-'15)
Tpy1 = azp(l — xy)
1.00 _
a4 - A
0.75 - i 0.66 : A
- = \
£ 0.50 1 js 5
- ' = 064 1 Periodi
0.25 4 0.64 erio '|c
il Chaotic  ~—r
0.00 . . . -
0.0 0.5 L0 3.70 3.72 3.74 3.76

x
" a

» Large(r) non-hyperbolic dissipative systems?



Linear response in practice/simulations

» Long, successful history of applying linear response in climate
systems since Leith ('75)
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Linear response in practice/simulations

» Long, successful history of applying linear response in climate
systems since Leith ('75)

» Some apparent failures (e.g. Cooper and Haynes '13,
Chekroun et al. '14)

Relative changes in % of the SD
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Chekroun et al., 2014
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» Long, successful history of applying linear response in climate
systems since Leith ('75)

» Some apparent failures (e.g. Cooper and Haynes '13,
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What is the mechanism behind linear response?



Linear response formula

Why?
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Linear response formula

Why?
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Linear response formula

d
— | Ad
de / Pe

Why?

[ee] u X
N—Z/AOT" dv®- (Xdp) dp
e=0 n=0 dp

Typically a function
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Linear response claim

Ruelle ('11, '18) conjectures:
» If you project onto one unstable manifold, singularities in the
density even out
» Stable dimension ds large = fatter attractor = more evening
out

» Response € — p, is CH1T057

Delay time = 4

Parameter



Linear response claim
Ruelle ('11, '18) conjectures:

» If you project onto one unstable manifold, singularities in the
density even out

» Stable dimension ds large = fatter attractor = more evening
out

» Response € — p, is CH1T057

Delay time = 4

Expectation of an observable (blue)
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How to prove this argument? No clue, immensely difficult.



Lozi map

Lozi map simplifies Hénon map:

|Unst. div.| for Hénon map
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Lozi map

Lozi map simplifies Hénon map:

|Unst. div.| for Lozi map
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Linear response
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Linear response

d
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For the Lozi map,
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Linear response

Theorem (W. '22)
Conditional decay of correlations (slightly extended) for the Lozi
map implies that the linear response formula converges.
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Linear response

How can this help us with smooth systems (Hénon, climate
models. .. )?

» Singularities again located on orbit of singularity “lines" (now
stable/unstable tangencies)

» If we have conditional decay of correlations on these “lines" in
largish systems, then linear response is likely to hold

» BUT: we expect susceptibility functions to decay slower than
usual rate of mixing



Conclusion

» “Conditional decay of correlations" regulates

» Linear response in non-hyperbolic dissipative chaos (i.e.
complex systems)
» Long-term prediction from accurate observations

» Mathematically CDoC is new ground
» Practical implications? Better LRT algorithms?

Hot off presses: arXiv:2206.09291
arXiv:2206.09292



