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Setting

Consider a mixing chaotic dynamical system xn = T (xn−1), with a
physical invariant measure ρ.

The physical measure encodes long-term ergodic behaviour of xn.
Mathematically, for observables A and Lebesgue-a.e. x0,

1
N

N−1∑
n=0

A(xn) N→∞−−−−→
∫

A(x) dρ(x) = “E[A]”
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Setting

Consider a smooth family ofmixing chaotic dynamical systems
xn = T ε(xn−1), with physical invariant measures ρε.
The physical measures encode long-term ergodic behaviour of xn.
Mathematically, for observables A and Lebesgue-a.e. x0,
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Linear response theory

“Eε[A]” :=
∫

A(x) dρε(x)

Linear response theory (LRT) answers: What is d
dερ

ε?
(e.g. for Taylor approximations)

. . . supposing differentiability of ε 7→ ρε!

When and why do we have differentiability?
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Decay of correlations
Classic result in dynamics (usually expect to be true):

Exponential decay of correlations
There exists θ < 1, C such that if A,B ∈ C1(M,R) then∣∣∣∣∫

M
A ◦ T n B dρ−

∫
M
Adρ

∫
M
B dρ

∣∣∣∣ ≤ C‖A‖C1‖B‖C1θn.

i.e. T n
∗ µ→ (∫ dµ)ρ exponentially quickly in (C1)∗

0 10 20 30 40 50

n

0

1

2

3

A
(x
n

)

∫
A dρ



Decay of correlations
Classic result in dynamics (usually expect to be true):

Exponential decay of correlations
There exists θ < 1, C such that if µ = Bρ and A,B ∈ C1(M,R)
then ∣∣∣∣∫

M
A ◦ T n dµ−

∫
M
Adρ

∫
M

dµ
∣∣∣∣ ≤ C‖A‖C1‖B‖C1θn.

i.e. T n
∗ µ→ (∫ dµ)ρ exponentially quickly in (C1)∗

0 10 20 30 40 50

n

0

1

2

3

A
(x
n

)

∫
A dρ



Decay of correlations
Classic result in dynamics (usually expect to be true):

Exponential decay of correlations
There exists θ < 1, C such that if µ = Bρ and A,B ∈ C1(M,R)
then ∣∣∣∣∫

M
A ◦ T n dµ−

∫
M
Adρ

∫
M

dµ
∣∣∣∣ ≤ C‖A‖C1‖B‖C1θn.

i.e. T n
∗︸︷︷︸

transfer
operator

µ→ (∫ dµ)ρ exponentially quickly in (C1)∗

0 10 20 30 40 50

n

0

1

2

3

A
(x
n

)

∫
A dρ



Decay of correlations
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I Diff’ble function B in µ = Bρ can represent some imperfect
information of the system’s state.

I Decay of correlations = this information will be lost over time
I How much can we improve our knowledge if we improve our

information?



Sense of talk

Two questions:
A. Prediction using perfect (or very good) observations.

B. Linear response (for general systems)
We will show that the two are governed by the same phenomenon:
“conditional decay of correlations".



A note on physical measures

A physical measure is typically an SRB measure, i.e. has the
following geometrical property:

conditional measure has a density



Prediction: setup

System xn ∈ M ⊆ Rd undergoing dynamics xn+1 = T (xn).
At certain times t we make an observation

zt = H(xt) + ξt ∈ Re

H : Rd → Re

e � d typically: partial obs noise ∼ N (0, σ2I)



Prediction: filter

I Given zt = H(xt) + ξt we want to estimate xn for n ≥ t.
I Standard to do this probabilistically, i.e. distribution of likely

xn
I Many options: particle filters, Kalman filters, grid methods. . .
I All approximate a Bayesian filter



Bayesian filter: assimilation step

Let’s do one assimilation step at t = 0.
I Suppose we are given prior distribution of x0 µ

−
0 .

I Then we can assimilate observation z0 to get posterior:

dµ+
0 (x) = P (X0 = x | H(X ) + ξ = z0) , X0 ∼ µ−0

I If ξ has pdf pσ then Bayes’ law says

dµ+
0 (x) = Z−1

σ

︸︷︷︸
const.

pσ(z0 − H(x))

︸ ︷︷ ︸
C1 function

dµ−(x)

︸ ︷︷ ︸
old measure

How to choose initial posterior µ−0 ? Natural choice is ρ.
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Bayesian filter: assimilation step
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Bayesian filter: prediction

I Given posterior µ+
0 we can predict future:

µn = T n
∗ µ

+
0

I If µ−0 = ρ then

µn = T n
∗ (Z−1

σ pσ(z − H(·))ρ)

So, as n→∞,∫
Adµn =

∫
A ◦ T n Z−1

σ pσ(z − H(·))dρ→
∫

Adρ

i.e. our predictions µn revert to the “no information" distribution ρ
exponentially fast.



Bayesian filter: prediction
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Bayesian filter: prediction

What happens if we improve our observations?
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Bayesian filter: prediction
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Zero noise limit
Zero-observation-noise limit?
As σ → 0,

pσ(z − H(x))→ δ(z − H(x))
So posterior turns into conditional measure

dµ+
t (x)→ Z−1

0 δ(z − H(x)) dρ(x) = dρ(x | H(x) = z)
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Zero noise limit

With very careful numerics we can make a rigorous sample:
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exponential decay!

Call this conditional decay of correlations (CDoC).
CDoC means that perfect, partial observations lose utility over
time.
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Zero noise limit

What can we say mathematically?
I If line z = H(x) is a stable manifold or invariant submanifold

then µ+
n 9 ρ.

I But this is non-generic!
I If system is conservative then CDoC expected
I If system is dissipative, µ+ is too irregular to prove things

(e.g. is Cantor measure). . .
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Conditional decay of correlations
Study baker’s map on [0, 1]2:

T (x , y) = (kx mod 1, vdkxe(y))
with vi non-overlapping contractions.
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Conditional decay of correlations

Theorem (W. ’22)
The conditional measure µ = ρ(· | ψ(y)− x = 0) is well-defined.
Furthermore, if ψ′ 6= 0 and either
I The {vi} are analytic and not conjugate to linear.
I The {vi} are linear with same contraction rate, and ψ′′ 6= 0

then there exists θ < 1 such that∣∣∣∣∫ A ◦ T n dµ−
∫

A dρ
∫

dµ
∣∣∣∣ ≤ Cθn‖A‖C1 .

Super generic: just need to break algebraic structure (linearity)



Conditional decay of correlations

I Conjecture that CDoC occurs if no obvious reason not to
I i.e. it occurs for almost every observations H, z .

I This gives a hard limit on utility of improving observation
accuracy.

I CDoC appears to b slowly than regular decay of correlations,
maybe dependent on dimension of µ.

I Proving CDoC looks to be hard!



Bayes filter: repeated observations

What if we make M ≥ 1 observations?
I We can think of it as a single observation at the final time

(H,H ◦ T−n1 ,H ◦ T−n2 , . . .H ◦ T−nM ) : Rd → ReM .

I If eM > 2d then Takens embedding theorem says we know x
exactly =⇒ exact info for all time!

I Expect CDoC at least if eM < # positive Lyapunov
exponents (can be large for multiscale systems)

I Blender-like properties might imply CDoC for intermediate eM



Linear response (time-independent version)

Given family of maps

T ε(x) = T (x) + εX (T (x)) + . . .

Linear response asks: when is ε 7→ ρε differentiable?
Given formally by sum

d
dε

∫
Adρε =

∞∑
n=0

κn

where κn are susceptibiility coefficients that may or may not blow
up. . .



Linear response in theory
Whe can prove that ε 7→ ρε is:
I Differentiable (C∞) in conservative (Kubo ’66) and stochastic

(Hairer and Majda ’10) systems
I Differentiable (C∞) in Axiom A (uniformly hyperbolic

dissipative chaos): Ruelle ’97, . . .

I At best C0.5− Hölder in logistic maps (Baladi and others
’08-’15)
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I Large(r) non-hyperbolic dissipative systems?
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Linear response in practice/simulations
I Long, successful history of applying linear response in climate

systems since Leith (’75)

I Some apparent failures (e.g. Cooper and Haynes ’13,
Chekroun et al. ’14)

I Possible to find coupled systems where LR fails in
thermodynamic limit (W. and Gottwald ’19)

[as described inMartynov and Nechepurenko (2006) and
GB07].

c. Estimating cloud response

Next, we examine the skill of operators in estimating
the cloud response. GBM08 demonstrated by example
that the FD operator has skill in estimating variables
with known or assumed functional relationship to the
variables that compose the operator. This idea has been
discussed by both Leith (1975) and Majda et al. (2005)
(although using different arguments as justification). In

the current model setup, where the seasons and ocean
are fixed, clouds are emphasized as a driver of vari-
ability. Therefore, it is expected that an operator will
capture important relations between cloud variables
and variables representing the climate state. Further-
more, working with multiple operators consisting of
different sets of variables offers the opportunity to
study these relations as a function of different repre-
sentations of the climate state. From this perspective,
the lack of skill of an operator is as important as the
presence of skill.

FIG. 6. Comparing the responses at 700 hPa for T, RH, and V to an ENSO-like perturbation (standardized) for (top
three rows) the fixed-SST scenario and (bottom three rows) the slab-ocean scenario.
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What is the mechanism behind linear response?
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Linear response formula

Why?
d
dε

∫
Adρε

∣∣∣∣
ε=0

= −
∞∑

n=0

∫
A ◦ T n∇

u

· (Xdρ)

line of folding
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Linear response claim
Ruelle (’11, ’18) conjectures:
I If you project onto one unstable manifold, singularities in the

density even out
I Stable dimension ds large = fatter attractor = more evening

out
I Response ε 7→ ρε is Cds+0.5− .
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How to prove this argument? No clue, immensely difficult.



Linear response claim
Ruelle (’11, ’18) conjectures:
I If you project onto one unstable manifold, singularities in the

density even out
I Stable dimension ds large = fatter attractor = more evening

out
I Response ε 7→ ρε is Cds+0.5− .

0.0 0.2 0.4 0.6 0.8 1.0
Parameter

0.58

0.59

0.60

0.61

0.62

Ex
pe

ct
at

io
n 

of
 a

n 
ob

se
rv

ab
le

 (b
lu

e)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ka
pl

an
-Y

or
ke

 d
im

 - 
un

st
ab

le
 d

im
 (o

ra
ng

e)

Delay time = 4

How to prove this argument? No clue, immensely difficult.



Lozi map

Lozi map simplifies Hénon map:

map singularity

T
(
x
y

)
=
(
1− ax2 + y

by

)



Lozi map

Lozi map simplifies Hénon map:

map singularity

T
(
x
y

)
=
(
1− a|x |+ y

by

)



Lozi map

Lozi map simplifies Hénon map:

map singularity

T
(
x
y

)
=
(
1− a|x |+ y

by

)



Linear response

d
dε

∫
Adρε

∣∣∣∣
ε=0

= −
∞∑

n=0

∫
A ◦ T n∇u · (Xdρ)︸ ︷︷ ︸

6=Bρ

For the Lozi map,

∇u · (Xdρ) = φcts

︸︷︷︸
function

dρ+
∞∑

m=−∞
φm

︸︷︷︸
functions

dTm
∗ µ

where µ = ρ(· | singularity line)
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Linear response

Theorem (W. ’22)
Conditional decay of correlations (slightly extended) for the Lozi
map implies that the linear response formula converges.
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Linear response

How can this help us with smooth systems (Hénon, climate
models. . . )?
I Singularities again located on orbit of singularity “lines" (now

stable/unstable tangencies)
I If we have conditional decay of correlations on these “lines" in

largish systems, then linear response is likely to hold
I BUT: we expect susceptibility functions to decay slower than

usual rate of mixing



Conclusion

I “Conditional decay of correlations" regulates
I Linear response in non-hyperbolic dissipative chaos (i.e.

complex systems)
I Long-term prediction from accurate observations

I Mathematically CDoC is new ground
I Practical implications? Better LRT algorithms?

Hot off presses: arXiv:2206.09291
arXiv:2206.09292


