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Setting
Consider family of chaotic systems xn = T ε(xn−1), with physical
measures ρε.
The physical measures encode the long-term ergodic behaviour for
each T ε. For observables ψ and Lebesgue-a.e. x0,

1
N

N−1∑
n=0

ψ(xn)
N→∞−−−−→

∫
ψ(x) dρε(x) =: Eε[ψ]
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Linear response theory

Eε[ψ] :=

∫
ψ(x) dρε(x)

Linear response theory (LRT) answers: What is d
dεE

ε[ψ]?
(e.g. for Taylor approximations)

. . . supposing ε 7→ Eε[ψ] is differentiable
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LRT in theory
Analytically, we know LRT works in
• Statistical mechanics: Kubo ’66
• Stochastic dynamical systems: Hänggi ’78, Hairer & Majda ’10
• Axiom A (uniformly hyperbolic dissipative chaos): Ruelle ’97-8
• Other dissipative systems. . . ?

Baladi and others (’08, ’10, ’14, ’15) proved there is no linear
response for quadratic maps, even Whitney differentiability.

0.0 0.5 1.0
xn

0.00

0.25

0.50

0.75

1.00

x
n

+
1

xn+1 = axn(1− xn)

3.70 3.72 3.74 3.76

a

0.64

0.66

Ea
[x

]

Periodic
Chaotic



LRT in theory
Analytically, we know LRT works in
• Statistical mechanics: Kubo ’66
• Stochastic dynamical systems: Hänggi ’78, Hairer & Majda ’10
• Axiom A (uniformly hyperbolic dissipative chaos): Ruelle ’97-8
• Other dissipative systems. . . ?

Baladi and others (’08, ’10, ’14, ’15) proved there is no linear
response for quadratic maps, even Whitney differentiability.

0.0 0.5 1.0
xn

0.00

0.25

0.50

0.75

1.00

x
n

+
1

xn+1 = axn(1− xn)

3.70 3.72 3.74 3.76

a

0.64

0.66

Ea
[x

]

Periodic
Chaotic



LRT in practice

Geophysicists have applied LRT to climate systems:

• A long record of success!
• Justified by chaotic hypothesis: “macroscopic dynamics are

Axiom A”
• However, linear response appears to fail in some systems

(e.g. Chekroun et al. ’14, Cooper and Haynes ’13)

Chekroun et al., ’14



The question

We address the following question:

When and why does linear response occur at macroscopic
scales in high-dimensional dissipative systems?

We study a “simple complex system” of M chaotic maps coupled
via a mean-field at

I. Infinite size M (thermodynamic limit)
II. M finite but fairly large
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Globally coupled maps

q
(j)
n = fε,Φn−1(q

(j)
n−1), j = 1, . . . ,M

Φn =
1
M

M∑
j=1

φ(q
(j)
n )

Observable is mean field Φn.

These systems have rich dynamical and linear response behaviour.



Model reduction

Use exchangeability of subsystems q(j) to write
in terms of empirical measure:

µn =
1
M

M∑
j=1

δ
q

(j)
n
.

System becomes

µn = f ∗ε,Φn
µn−1

Φn =

∫
φ dµn



Model reduction: thermodynamic limit

In thermodynamic limit (M →∞) expect µn to be a physical
measure of cocycle {fε,Φn}n∈N:

µn = µn(Φn−1,Φn−2, . . . ; ε) := lim
k→∞

f ∗Φn−1,ε · · · f ∗Φn−k ,ε
Leb

This gives us delay system in Φ:

Φn =

∫
φ dµ∞n =: Fε(Φn−1,Φn−2, . . .)

What are its dynamics?



Model reduction: thermodynamic limit

• Mixing of microscopic dynamics f implies F only depends on
recent history of Φ.
Macroscopic dynamics are close to finite dimensional!
• For any map g we can find a coupled system with

Φn ≈ g(Φn−1).
All dynamics are possible.

For F to be smooth, we need f to have linear response.



Thermodynamic limit
We studied f uniformly expanding (best possible case for LRT).
We can obtain a period doubling bifurcation to (macroscopic)
chaos:



Thermodynamic limit

Despite hyperbolic subsystems, a failure of linear response:
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Globally coupled unif. exp. maps, M =∞

In fact, the macroscopic dynamics are non-hyperbolic, contra
Gallavotti-Cohen chaotic hypothesis.
Evidence: homoclinic tangencies.



Finite size

In climate science have incomplete scale separations: need to
consider finite size effects.

Mean-field Φn is more or less a random sample
from the thermodynamic limit.
So by central limit theorem,

Φn = Fε(Φn−1,Φn−2, . . .) +
1√
M
ζn,

where ζn is a mean-zero Gaussian process with
decay of correlations etc.

This is a stochastic system.
=⇒ we expect LRT



Finite size

Noise induces linear response even when f is nasty (e.g.
quadratic map):
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Finite size

Works even for very small systems (e.g. M = 4):
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Likely related to generic distribution of singularities in physical
measures (Ruelle ’19, W. in progress).



Conclusions

Studied globally coupled systems via models for macroscopic
dynamics for large/infinite M.
• Finite size: emergent stochastic effects reliably induce linear

response
• In thermodynamic limit need:

• Microscopic dynamics satisfy LRT
• Macroscopic dynamics are nice, e.g. hyperbolic (not always

true)

• Not shown: parameter variation in subsystems helps produce
mean-field LRT
• Q: how does this extend to other kinds of couplings?
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