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Setting

Consider family of chaotic systems x, = T¢(xp—1), with physical
measures p°.

The physical measures encode the long-term ergodic behaviour for
each T¢. For observables ¢ and Lebesgue-a.e. xg,
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Linear response theory

Bl = [ 6004 (x)

Linear response theory (LRT) answers: What is d%IEE[w]?
(e.g. for Taylor approximations)



Linear response theory

E[y] = / $(x) d(x)

Linear response theory (LRT) answers: What is d%IEE[w]?
(e.g. for Taylor approximations)

...supposing ¢ — [E[¢] is differentiable



LRT in theory

Analytically, we know LRT works in
e Statistical mechanics: Kubo '66
e Stochastic dynamical systems: Hanggi '78, Hairer & Majda '10
e Axiom A (uniformly hyperbolic dissipative chaos): Ruelle '97-8
® Other dissipative systems. . .7
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Baladi and others ('08, '10, '14, '15) proved there is no linear
response for quadratic maps, even Whitney differentiability.
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LRT in practice

Geophysicists have applied LRT to climate systems:

® A long record of success!

e Justified by chaotic hypothesis: "macroscopic dynamics are
Axiom A"

® However, linear response appears to fail in some systems
(e.g. Chekroun et al. '14, Cooper and Haynes '13)

Relative changes in % of the SD

Chekroun et al., '14



The question

We address the following question:

When and why does linear response occur at macroscopic
scales in high-dimensional dissipative systems?



The question

We address the following question:

When and why does linear response occur at macroscopic
scales in high-dimensional dissipative systems?

We study a “simple complex system” of M chaotic maps coupled
via a mean-field at

O® Infinite size M (thermodynamic limit)
©® M finite but fairly large



Globally coupled maps
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Observable is mean field ®,,.

These systems have rich dynamical and linear response behaviour.



Model reduction

Use exchangeability of subsystems gU) to write
in terms of empirical measure:
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Model reduction: thermodynamic limit

In thermodynamic limit (M — o0) expect p, to be a physical
measure of cocycle {£. ¢, }nen:

tn = pin(Pp_1,Pp_2,...;€) ;= lim f$n71’€ i ﬁf;nik,SLeb
k—o0
This gives us delay system in ®:
b, = /¢duﬁ° = F(®p_1,Pp2,...)

What are its dynamics?



Model reduction: thermodynamic limit

® Mixing of microscopic dynamics f implies F only depends on
recent history of ®.
Macroscopic dynamics are close to finite dimensional!

® For any map g we can find a coupled system with
(Dn ~ g(d),,_l).
All dynamics are possible.

For F to be smooth, we need f to have linear response.



Thermodynamic limit

We studied f uniformly expanding (best possible case for LRT).

We can obtain a period doubling bifurcation to (macroscopic)
chaos:
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Thermodynamic limit
Despite hyperbolic subsystems, a failure of linear response:

Globally coupled unif. exp. maps, M = oo
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In fact, the macroscopic dynamics are non-hyperbolic, contra
Gallavotti-Cohen chaotic hypothesis.
Evidence: homoclinic tangencies.



Finite size

In climate science have incomplete scale separations: need to
consider finite size effects.

Mean-field @, is more or less a random sample ¢ ’
from the thermodynamic limit. N q,)’
So by central limit theorem, o® ‘ M

(Dn—F((Dn 1a¢n 27'--) \/me [

o0
where (,, is a mean-zero Gaussian process with t

decay of correlations etc.

This is a stochastic system.
—> we expect LRT



Finite size

Noise induces linear response even when f is nasty (e.g.
quadratic map):

Globally-coupled unimodal maps
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Finite size
Works even for very small systems (e.g. M = 4):

Globally-coupled unimodal maps
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Likely related to generic distribution of singularities in physical
measures (Ruelle '19, W. in progress).



Conclusions

Studied globally coupled systems via models for macroscopic
dynamics for large/infinite M.
® Finite size: emergent stochastic effects reliably induce linear
response
® In thermodynamic limit need:

® Microscopic dynamics satisfy LRT
® Macroscopic dynamics are nice, e.g. hyperbolic (not always
true)

® Not shown: parameter variation in subsystems helps produce
mean-field LRT

® Q: how does this extend to other kinds of couplings?
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