
Numerical methods in

(non-hyperbolic) chaos
Caroline Wormell, Sorbonne Université/CNRS

Outline

1. Motivation, distinguishing chaos, unknowns
2. Monte Carlo estimation and error analysis, statistical tests for chaos
3. Transfer and Koopman operator discretisations I: Galerkin discretisation, EDMD
4. Transfer and Koopman operator discretisations II: convergence rates

Part 1: trajectories and known unknowns

Why numerics in dynamics

Calculations are a natural part of doing mathematics. We need them to:

Estimate quantities/qualitative behaviour in applications (90%*)
Understand something for mathematical ends: e.g. what results should we try and
prove? (9%)
Prove a theorem (1%)

If they are extensive enough, they are very tedious, so we get a computer to do them for
us.

NASA Susan Kare

</div>

Symbolic computations (e.g. Mathematica) generally don't help much with chaotic
systems, because of their lack of algebraic structure and exponentially growing
complexity.

This means we mostly have to approximate our systems. This is a lot of grunt work, so
computers are crucial.

James Gleick, Chaos, p. 17

(Non-hyperbolic) chaos

Solid proofs are usually only achievable for systems with nice hyperbolicity properties,
which is why we all study them.

But there are good reasons to try to study non-uniformly hyperbolic systems:

with thanks to Ian Melbourne

Trajectories

Sometimes the easiest way to see the dynamical behaviour of the system is to simulate a
trajectory (or a lot), and see what it does.

Let's try that for one of the (symbolically!) simplest chaotic systems:

Trajectories

Sometimes the easiest way to see the dynamical behaviour of the system is to simulate a
trajectory (or a lot), and see what it does.

Let's try that for one of the (symbolically!) simplest chaotic systems:

In [196]:
logistic(x,a) = a*x*(1-x) # logistic map on [0,1] with parameter a ∈ [0,4]

Out[196]:

logistic (generic function with 1 method)

Trajectories

Sometimes the easiest way to see the dynamical behaviour of the system is to simulate a
trajectory (or a lot), and see what it does.

Let's try that for one of the (symbolically!) simplest chaotic systems:

In [196]:
logistic(x,a) = a*x*(1-x) # logistic map on [0,1] with parameter a ∈ [0,4]

Out[196]:

logistic (generic function with 1 method)

In [197]:
function simulate_logistic(a, # logistic parameter

 N; # time series length

 x0=rand()) # initial value

 xh = Array{Float64}(undef,N) # initialises a vector to put values in

 xh[1] = x0

 for n = 1:N-1

 xh[n+1] = logistic(xh[n],a)

 end

 xh

end

Out[197]:

simulate_logistic (generic function with 1 method)

In [228]:
println(simulate_logistic(3.8,100;x0=sqrt(0.5)))

[0.7071067811865476, 0.7870057685088805, 0.636985217601

9822, 0.8786931906024428, 0.40504757608709935, 0.915739

3413336463, 0.29321104025637046, 0.7875056392869607, 0.

635893928037145, 0.8798247932260139, 0.4017858805130999

4, 0.913345149586969, 0.3007539917891196, 0.79914390720

57132, 0.6099491065704588, 0.90406253706456, 0.32958717

133561416, 0.8396459777410901, 0.511634317256336, 0.949

4856421155199, 0.1822580986215953, 0.5663523196120573,

0.9332700047919776, 0.23665299120072675, 0.686463741234

6069, 0.8178788381782156, 0.5660215681061777, 0.9334363

796702451, 0.23610503815773445, 0.685365906634223, 0.81

94300264991555, 0.5622649410488454, 0.9352676930414984,

0.2300597344984614, 0.6731025616316436, 0.8361349119949

394, 0.5206506195649866, 0.9483794972640123, 0.18603214

04464321, 0.575411896035934, 0.9283895745578087, 0.2526

3301515868275, 0.717476384279959, 0.7702752846659593,

0.6724148278951917, 0.8370378830631114, 0.5183407684452

783, 0.9487217416087793, 0.18486543470881878, 0.5726227

818832053, 0.9299585398958687, 0.24751548508832805, 0.7

077559649733072, 0.7859823442684379, 0.639213575313568

8, 0.8763544057039706, 0.41175797296740213, 0.920410709

7276774, 0.2783683735558283, 0.7633418042069023, 0.6864

741577968033, 0.817864076201097, 0.5660572304311281, 0.

9334184807695215, 0.23616399800427168, 0.68548414339345

81, 0.8192634036884613, 0.5626693404479827, 0.935075704

3176964, 0.23069469974734963, 0.6744036899721534, 0.834

4167411115686, 0.5250286844044088, 0.947619546836541,

0.18861961690142864, 0.5815605766812704, 0.924721914859

3907, 0.2645229211450554, 0.7392920722689802, 0.7324093

557670253, 0.7447463871374339, 0.7223769827360587, 0.76

20842146869853, 0.6889850847652436, 0.81428162339784,

0.5746628325387892, 0.9288167534616818, 0.2512415294122

1617, 0.7148530485811414, 0.7745850365584809, 0.6634916

192530753, 0.8484278636492283, 0.4886724905647722, 0.94

95124126139804, 0.18216664544264263, 0.566131443177105

2, 0.9333812024485906, 0.23628678678401224, 0.685730296

466136, 0.8189161765034846]

WebIO not detected.

Please read for more information on how to resolve
this issue.

In [202]:
display(dynamics_graph);

the troubleshooting guide

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/
https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

WebIO not detected.

Please read for more information on how to resolve
this issue.

In [202]:
display(dynamics_graph);

the troubleshooting guide

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

Thought exercise: What appear to be some features of chaotic time series?

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/
https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

Thought exercise 2: Can you distinguish a chaotic time series from other things (e.g.
a signal from a irrational rotation):

What does a generic trajectory tell us?

Let's assume we have a discrete time system . Continuous time usually
conceptually similar but some more issues.

f : M → M

Physical measures

A physical measure is a measure that describes the statistical behaviour of a some set of
initial conditions with . (Often , or if not is a basin of
attraction for some attractor.)

That is, for all and continuous ,

E Leb(E) > 0 Ē = M int Ē

x ∈ E A : M → R

lim
N→∞

N−1

∑
n=0

A(f n(x)) = ∫
M

A(y) dρ(y).
1
N

In [229]:
using Statistics

cummean(v) = cumsum(v) ./ eachindex(v)

A(x) = x^2

for i = 1:4

 Nmax = 100

 xh = Array{Float64}(undef,Nmax) # initialises a vector to put values in

 a = 3.8 # logistic parameter (chaotic we think)

 xh[1] = rand() # should select a Lebesgue-generic point

 for n = 1:Nmax-1

 xh[n+1] = logistic(xh[n],a)

 end

 plot(1:Nmax, cummean(A.(xh)))

 xlabel("\$N\$"); xlim(1,Nmax)

 ylabel("Birkhoff mean")

end

In [229]:
using Statistics

cummean(v) = cumsum(v) ./ eachindex(v)

A(x) = x^2

for i = 1:4

 Nmax = 100

 xh = Array{Float64}(undef,Nmax) # initialises a vector to put values in

 a = 3.8 # logistic parameter (chaotic we think)

 xh[1] = rand() # should select a Lebesgue-generic point

 for n = 1:Nmax-1

 xh[n+1] = logistic(xh[n],a)

 end

 plot(1:Nmax, cummean(A.(xh)))

 xlabel("\$N\$"); xlim(1,Nmax)

 ylabel("Birkhoff mean")

end

How do you sample from Lebesgue measure? Use random number generator: rand()

for each bin .

N−1

∑
n=0

1E(f n(x)) → ∫
M

1E dρ = ρ(E)
1
N

E ⊂ [0, 1]

In [232]:
N = 100000

xh = Array{Float64}(undef,N) # initialises a vector to put values in

a = 3.8 # logistic parameter

xh[1] = rand() # should select a Lebesgue-generic point

for n = 1:N-1

 xh[n+1] = logistic(xh[n],a)

end

using PyPlot

hist(xh,bins=0:0.01:1,weights=fill(1/N,N)); xlabel("x"); ylabel("Proportion of time spent in bin");

WebIO not detected.

Please read for more information on how to resolve
this issue.

In [208]:
display(physmeas_graph)

the troubleshooting guide

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/
https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

How to test for chaotic dynamics?

There are a lot of ways to test for chaos using trajectory information. Perhaps the most
obvious is to test for positive Lyapunov exponents:

This measures how fast nearby orbits move away from each other.

Options:

: chaos*
: convergence to a fixed point, or in discrete time, a periodic orbit
: more information necessary

Lexp(x0) = lim
N→∞

log ∥DfN(x0)∥

N

∥fN(y0) − fN(x0)∥ = ∥DfN(x0)(y0 − x0)∥ + O(∥y0 − x0∥2)

Lexp > 0
Lexp < 0
Lexp = 0

In one dimension, i.e. is a Birkhoff average.

This is how we've been testing for chaos:

In [209]:
a slightly simplified version

function lyap_logistic(a,# logistic parameter

 N=10^5, # length of time to run

 x0=rand()) # starting point

 lyap_birkhoff_sum = 0.

 for i = 1:N

 lyap_birkhoff_sum += log(a*abs(1-2x0)) # log |f'| for the logistic map

 x0 = logistic(x0,a)

 end

 lyap_birkhoff_sum / N # to get birkhoff mean = Lyapunov exponent estimate

end;

In one dimension,

i.e. is a Birkhoff average.

This is how we've been testing for chaos:

In [209]:
a slightly simplified version

function lyap_logistic(a,# logistic parameter

 N=10^5, # length of time to run

 x0=rand()) # starting point

 lyap_birkhoff_sum = 0.

 for i = 1:N

 lyap_birkhoff_sum += log(a*abs(1-2x0)) # log |f'| for the logistic map

 x0 = logistic(x0,a)

 end

 lyap_birkhoff_sum / N # to get birkhoff mean = Lyapunov exponent estimate

end;

But we are assuming that a finite estimate is a good approximation of the limit as . Is that
fair?

Regular vs chaotic

For the logistic map, you have more or less two options:

Theorem (Jakobsen '81, Lyubich '97, Lyubich '02): The logistic parameters [0,4] are
a disjoint union , where: * consists of parameters with chaotic
orbits (positive Lyapunov exponents) almost everywhere. It is nowhere dense in ,
and of positive Lebesgue measure. * consists of parameters with globally stable
periodic orbits. It is open and dense in , and of positive Lebesgue measure. *

 has zero Lebesgue measure in .

AC ∪ AP ∪ AAP AC

[0, 4]
AP

[0, 4]
AAP [0, 4]

InXnI, Wikimedia Commons

The set of chaotic parameters is not nice to work with computationally: arbitrarily small
perturbations give regular dynamics!

(The chaotic parameters are structurally unstable.)

Why is this?

The set of chaotic parameters is not nice to work with computationally: arbitrarily small
perturbations give regular dynamics!

(The chaotic parameters are structurally unstable.)

Why is this?

There's no structural guarantee in the logistic map against stable periodic orbits ("sinks").

Thus, you can only have chaos when you don't have a sink. This happens a positive
proportion of the time.

The set of chaotic parameters is not nice to work with computationally: arbitrarily small
perturbations give regular dynamics!

(The chaotic parameters are structurally unstable.)

Why is this?

There's no structural guarantee in the logistic map against stable periodic orbits ("sinks").

Thus, you can only have chaos when you don't have a sink. This happens a positive
proportion of the time.

Numerical exercise: try and estimate the measure of .

However, it is very easy to perturb a chaotic orbit to get a sink. Take the orbit of the critical
point :

So we always have a sink when is periodic.

0.5

(fN)′(0.5) = f ′(0.5)(fN−1)′(f(0.5)) = 0

0.5

WebIO not detected.

Please read for more information on how to resolve
this issue.

In [211]:
display(periodicorbitgraph(4,3.8:0.005:3.83));

the troubleshooting guide

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/
https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

WebIO not detected.

Please read for more information on how to resolve
this issue.

In [212]:
display(periodicorbitgraph(9,3.8:0.0002:3.801));

the troubleshooting guide

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/
https://juliagizmos.github.io/WebIO.jl/latest/troubleshooting/not-detected/

If there isn't a sink, then the forward orbit of is very unstable (according to the Lyapunov
exponent). So if we perturb the parameter a little then we can move the orbit of so as
to recur and create a sink:

But

So (for certain 's at least) for we can make periodic of order , and
therefore a sink, so .

Of course, this is more complicated to prove.

Numerical exercise: find a logistic parameter with a stable orbit of length 51. (Hint:
you will want to use a root-finding package)

f
0.5

fN
a (0.5) − 0.5 = (fN

a0 (0.5) − 0.5) + (0.5)(a − a0) + h. o. t..
∂fN

a0

∂a0

(0.5) =
N−1

∑
n=0

(fN−n
a0)′(f n+1(0.5)) (f n(0.5)) ∼ LN−1

exp .
∂fN

a0

∂a0

∂fa0

∂a0

N a ∼ L−N
expa0 0.5 N

a ∈ AP

So how do you know you if have chaos for a given (non-special) logistic map or not?

You can show that you do have chaos by saying something about (e.g. fixing pointwise
Lyapunov exponent). But you need to know its behaviour for all time (usually impossible).

So how do you know you if have chaos for a given (non-special) logistic map or not?

You can show that you do have chaos by saying something about (e.g. fixing pointwise
Lyapunov exponent). But you need to know its behaviour for all time (usually impossible).

You can show that you don't have chaos by finding a stable periodic orbit. But this could
take an arbitrarily long time, and you have no way to know when to give up.

In [241]:
N = 100000

xh = Array{Float64}(undef,N) # initialises a vector to put values in

a = 3.7030314384 # logistic parameter

xh[1] = rand() # should select a Lebesgue-generic point

for n = 1:N-1

 xh[n+1] = logistic(xh[n],a)

end

figure(1,figsize=(10,6))

subplot(121)

hist(xh,bins=0:0.01:1,weights=fill(1/N,N)); xlabel("x"); ylabel("Proportion of time spent in bin");

subplot(122)

xlim(1,N-1); xlabel("\$n\$"); ylim(0,1);ylabel("\$f^n(x_0)\$");

plot(1:N,xh[1:end],".");

println("estimated Lyapunov exponent = ",lyap_logistic(a,N))

estimated Lyapunov exponent = 0.0893804304351754

In [214]:
logistic_inv(x,y,a) = 0.5 + flipsign(sqrt(max(0.25-x/a,0)),y-0.5)

 # the pre-image of the logistic map that is closest to y (or if no pre-image exists, the critical point)

Out[214]:

logistic_inv (generic function with 2 methods)

In [214]:
logistic_inv(x,y,a) = 0.5 + flipsign(sqrt(max(0.25-x/a,0)),y-0.5)

 # the pre-image of the logistic map that is closest to y (or if no pre-image exists, the critical point)

Out[214]:

logistic_inv (generic function with 2 methods)

In [215]:
x = xh[end]+1e-9 # a small perturbation of our stable period 34 orbit

for y = repeat(xh[end-1:-1:end-34],100001)

 x = logistic_inv(x,y,a)

end # iterate backwards close to the unstable periodic orbit, to try and find a stable periodic orbit

for y = repeat(xh[end-1:-1:end-34],1)

 x = logistic_inv(x,y,a)

 abs(x-0.5) < 1e-3 && break

end

xw = Array{Float64}(undef,34,2)

xw[1,:] = [x,0.5]

for i = 1:33

 xw[i+1,:] = logistic.(xw[i,:],a)

end

figure(figsize=(10,2))

plot(xw',zeros(size(xw')),"k.-");

xlabel("x"); yticks([])

Out[215]: (Any[], Any[])

The globally attracting periodic dynamics is qualitatively visible on a set of Lebesgue
measure

In [216]:
sum(abs.(xw[1:end,1] - xw[1:end,2]))

Out[216]:

2.6353601171869023e-5

However, a randomly selected periodic parameter is likely to be of low order (numerical
study by Galias '17):

Galias '17

Stable periodic orbits of low order are relatively easy to rule out (e.g. by running a long
integration), one can make a "probabilistic" guess of chaos.

Some notes on iteration

Most computer operations take place in floating point arithmetic. This introduces errors.

Most computer operations take place in floating point arithmetic. This introduces errors.

In [246]:
Float64(π)*Float64(π)

Out[246]:

9.869604401089358

Most computer operations take place in floating point arithmetic. This introduces errors.

In [246]:
Float64(π)*Float64(π)

Out[246]:

9.869604401089358

In [247]:
BigFloat(π) * BigFloat(π)

Out[247]:

9.86960440108935861883449099987615113531369940724079062

6413349376220044822419144

Most computer operations take place in floating point arithmetic. This introduces errors.

In [246]:
Float64(π)*Float64(π)

Out[246]:

9.869604401089358

In [247]:
BigFloat(π) * BigFloat(π)

Out[247]:

9.86960440108935861883449099987615113531369940724079062

6413349376220044822419144

In [219]:
(500/27 + 500)*27 - 500*27 # should equal 500

Out[219]:

499.9999999999982

This is usually not a problem for sampling the physical measure accurately.

The usual justification is:

(See also recent work of Guihéneuf and collaborators.)

This is why we talk about the physical measure: other invariant measures will not be
sampled efficiently.

The discretisation error behaves like a noise, and physical measures are usually stable to the
introduction of a small dynamical noise ("stochastically stable").

0In practice, the discretisation of the dynamical system has a finite state space (usually of
size) of which only maybe points will be sampled in the limit
(Lanford '98).

So don't try and iterate too long (in double floating point).

P ≈ (1016)dimension √P

Beware of this sort of thing too:

In [253]:
doubling(x) = mod(2x,1) # doubling map f(x) = 2x mod 1

x = rand()

for i = 1:100

 print(x,", ")

 x = doubling(x)

end

0.28895008239176145, 0.5779001647835229, 0.155800329567

04581, 0.31160065913409163, 0.6232013182681833, 0.24640

263653636651, 0.49280527307273303, 0.9856105461454661,

0.9712210922909321, 0.9424421845818642, 0.8848843691637

285, 0.769768738327457, 0.5395374766549139, 0.079074953

30982783, 0.15814990661965567, 0.31629981323931133, 0.6

325996264786227, 0.26519925295724533, 0.530398505914490

7, 0.06079701182898134, 0.12159402365796268, 0.24318804

731592536, 0.4863760946318507, 0.9727521892637014, 0.94

55043785274029, 0.8910087570548058, 0.7820175141096115,

0.564035028219223, 0.12807005643844604, 0.2561401128768

921, 0.5122802257537842, 0.02456045150756836, 0.0491209

0301513672, 0.09824180603027344, 0.19648361206054688,

0.39296722412109375, 0.7859344482421875, 0.571868896484

375, 0.14373779296875, 0.2874755859375, 0.574951171875,

0.14990234375, 0.2998046875, 0.599609375, 0.19921875,

0.3984375, 0.796875, 0.59375, 0.1875, 0.375, 0.75, 0.5,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0,

Easy to fix (using stochastic stability of physical measure):

In [221]:
doubling(x) = mod(2x,1) # doubling map f(x) = 2x mod 1

x = rand()

for i = 1:100

 print(x,", ")

 x = doubling(x) + 10eps()*randn()

end

0.7642450945291988, 0.5284901890584004, 0.0569803781168

0088, 0.1139607562336036, 0.22792151246720735, 0.455843

02493441725, 0.911686049868833, 0.8233720997376683, 0.6

46744199475337, 0.2934883989506732, 0.5869767979013477,

0.1739535958026968, 0.34790719160539524, 0.695814383210

7883, 0.39162876642157624, 0.7832575328431538, 0.566515

0656863049, 0.13303013137261122, 0.266060262745226, 0.5

321205254904496, 0.06424105098089884, 0.128482101961800

54, 0.25696420392360036, 0.5139284078472013, 0.02785681

5694397647, 0.05571363138879821, 0.11142726277759532,

0.22285452555519195, 0.44570905111038517, 0.89141810222

0772, 0.782836204441545, 0.5656724088830931, 0.13134481

776618487, 0.26268963553237096, 0.525379271064743, 0.05

075854212948604, 0.10151708425896895, 0.203034168517937

57, 0.4060683370358763, 0.8121366740717539, 0.624273348

1435064, 0.24854669628701653, 0.49709339257403584, 0.99

41867851480723, 0.9883735702961426, 0.9767471405922838,

0.953494281184567, 0.9069885623691349, 0.81397712473826

58, 0.6279542494765308, 0.25590849895306583, 0.51181699

79061321, 0.023633995812261402, 0.04726799162452099, 0.

0945359832490408, 0.18907196649807992, 0.37814393299615

93, 0.7562878659923205, 0.5125757319846422, 0.025151463

969283114, 0.05030292793856675, 0.1006058558771334, 0.2

0121171175426752, 0.4024234235085388, 0.80484684701707

9, 0.6096936940341583, 0.21938738806831692, 0.438774776

13663296, 0.8775495522732636, 0.7550991045465294, 0.510

1982090930568, 0.020396418186115983, 0.0407928363722317

7, 0.08158567274446284, 0.16317134548892437, 0.32634269

09778515, 0.6526853819556985, 0.30537076391139634, 0.61

07415278227926, 0.2214830556455826, 0.4429661112911613

7, 0.8859322225823203, 0.7718644451646423, 0.5437288903

292848, 0.0874577806585679, 0.1749155613171397, 0.34983

11226342802, 0.6996622452685594, 0.3993244905371207, 0.

7986489810742387, 0.5972979621484735, 0.194595924296947

97, 0.3891918485938977, 0.7783836971877959, 0.556767394

3755912, 0.11353478875118042, 0.22706957750236037, 0.45

413915500471785, 0.9082783100094365, 0.816556620018876

5,

Like our calculations, computer representations

are �nite.

We have to make finite approximations of:

Space/position
Time (if applicable)
Numbers! (e.g. in)

We are constantly introducing error into our calculations (and the effect of these errors
may be hard/impossible to know rigorously).

R,C

How rigorous to be?

As with paper calculations, there are different levels of rigour.

They are all useful!

We regularly make mathematical hypotheses based on inductive
(scientist-style) reasoning.

Suppose we use algorithm to compute proposition . We could have:

1. is definitely, mathematically true (i.e. constitutes a proof).

Example: The Lorenz flow is a Geometric Lorenz flow (Tucker 1999)

Suppose we use algorithm to compute proposition . We could have:

1. is definitely, mathematically true (i.e. constitutes a proof).

Example: The Lorenz flow is a Geometric Lorenz flow (Tucker 1999)

1. That converges is a theorem, (1) would be true if we computed the (small)
approximation errors explicitly.

Example: Running some proven-to-work approximation algorithm but not keeping track of
the errors.

Suppose we use algorithm to compute proposition . We could have:

1. is definitely, mathematically true (i.e. constitutes a proof).

Example: The Lorenz flow is a Geometric Lorenz flow (Tucker 1999)

1. That converges is a theorem, (1) would be true if we computed the (small)
approximation errors explicitly.

Example: Running some proven-to-work approximation algorithm but not keeping track of
the errors.

1. We have a good idea of how to prove converges, (2) would be true if we did that.

Example: Minor extensions of existing algorithms. "What if we used a Lipschitz
observable instead of like in the theorem"

1. would converge if clearly true condition holds, (2) or (3) would be true if we could
prove .

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things

1. would converge if clearly true condition holds, (2) or (3) would be true if we could
prove .

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things

1. (2) or (3) is true in an analogous setting, and would be true if we could extend it to
our setting.

Example: Applying an algorithm proven for Anosov maps to a non-uniformly hyperbolic
map

1. would converge if clearly true condition holds, (2) or (3) would be true if we could
prove .

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things

1. (2) or (3) is true in an analogous setting, and would be true if we could extend it to
our setting.

Example: Applying an algorithm proven for Anosov maps to a non-uniformly hyperbolic
map

1. We have some formal calculation/intuition that should compute (usually plus
some evidence in practice).

Example: Dynamic mode decomposition, etc

All of these are useful for both mathematicians and scientists!

Non-uniformly hyperbolic systems will almost always fall into cases 4–6.

All of these are useful for both mathematicians and scientists!

Non-uniformly hyperbolic systems will almost always fall into cases 4–6.

General exercises: find or recall examples of numerics that you have seen
corresponding to cases 1–6.

In []:

In []:

