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Introduction

Diffusion maps: on a random point sample, create matrix
approximation of semigroup of weighted Laplacian.

I Eigendata of Laplacian (e.g. for dimensionality reduction,
visualisation. . . )

I Non-parametric forecasting

I Approximation of more complex operators (e.g. Berry ’18)



Diffusion maps

I Sample of M points x i ∼ ρ abs. cts on domain D = (R/LZ)d .

I Construct M ×M kernel matrix K

Kij = 1
M gε(x

i − x j)

where gε is Gaussian kernel of variance ε.

I With appropriate weight vectors u and v := 1/(Ku), construct
Markov matrix

P = diag v K diag u

I As M →∞ and ε→ 0 appropriately, P is approximation of
eεL where

L = 1
2 ∆ + log p · ∇φ



Diffusion maps: convergence rates
Expect in general:∥∥∥f (Pt/ε)− f (etL)

∥∥∥ = O
(
M−

1
2 ε−

d
4−

1
2 log(· · · )···︸ ︷︷ ︸

“variance error”

+ εθ︸︷︷︸
“bias error”

)
Know rigorously this works for
I f = pointwise evaluation of functions (von Luxburg et al. ’08)
I f = eigendata of graph Laplacian (Calder and Trillos ’20)

∝ √ε

Figure: Effective support of gε contains O(Mεd/2) data points.



Questions

Some mysteries we will investigate:

1. How does an operator defined on a random point cloud
converge as an operator to a continuous kernel? (At the rate
seen in practice?)

2. What is the (best possible) exponent in the bias error? How
can we best choose weight vectors?



Kernel operator interpolation

The following operator on C 0(D) matches kernel matrix K at
sample points:

KM
ε φ =

M∑
i=1

1
M gε(· − x i )φ(x i ) = gε ∗ [ρMφ]

As M →∞, expect KM
ε to converge to continuous kernel operator

Kεφ := gε ∗ [ρφ],

ideally in some Banach space Bε b C 0.



Kernel operator interpolation

Because gε = gε/2 ∗ gε/2 we can try for

KM
ε −Kε = gε/2 ∗︸ ︷︷ ︸

bd. C0 → Bε

(KM
ε/2 −Kε/2)︸ ︷︷ ︸

small Bε → C0

= small Bε → Bε



Choice of Bε

As ε→ 0, convolution by gε ∗ φ→ φ, so we expect B0 = C 0.
Let the complex domain

Dε = D + BC(
√
ε/2).

One of the “smallest” candidates is

Bε(D) := {ct’s analytic functions on Dε}

endowed with C 0(Dε) norm.
This is good because

‖gε/2 ∗ φ‖Bε = ‖gε/2‖L1(∂Dε)‖φ‖C0 = e1/2‖φ‖C0

which gives us the bounded norm C 0 → Bε/2.



Kernel operator interpolation

Want to show that, up to log terms,

δ := ‖Kε/2φ−KM
ε/2φ‖Bε→C0 ≈ pointwise bound = O(M−1/2ε−d/4)

We know that* for fixed φ and x ,∣∣∣(Kεφ−KM
ε φ)(x)

∣∣∣ ≤ Cε−d/4

M1/2
|N (0, 1)|,

i.e error is O(M−1/2ε−d/4)
How to extend efficiently to uniform bounds for all φ ∈ Bε, x ∈ D?

sup
‖φ‖Bε=1

∣∣∣(Kεφ−KM
ε φ)(x)

∣∣∣ ∼ Cε−d/4

M1/2
× log terms

* except for large deviations
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Naive idea (Glivenko-Cantelli)

We have (bad) a priori estimate

‖Kε −KM
ε ‖C0 ≤ 2 sup gε = Cε−d/2.

The unit ball in Bε is compact in C 0, so we can cover the unit ball
with a finite number of C 0 balls, i.e. there is a collection of
#(Bε, ξ) functions φn so that every φ with ‖φ‖Bε ≤ 1 has
‖φn − φ‖ ≤ ξ for some n.



Naive idea (Glivenko-Cantelli)

Maximising over the φn,

sup
n

∣∣∣(Kεφn −KM
ε φn)(x)

∣∣∣ ≤ Cε−d/4

M1/2
N#(Bε,ξ),

where the maximum absolute value of T (non-ind.) standard
normal distributions is NT = O(

√
logT ). Thus,

sup
‖φ‖Bε=1

∣∣∣(Kεφ−KM
ε φ)(x)

∣∣∣ ≤ Cε−d/4

M1/2
N#(Bε,ξ) + Cε−d/2ξ.

Want
√

log #(Bε, ξ) to grow sub-polynomially with ε, ξ → 0.



Naive idea (Glivenko-Cantelli)

In practice, if X ⊂ Rd is a hypercube of length L then

log #(C 0(X ),Bε(X ), ξ) = O
(

(Lε−1/2 log ξ−1)d
)

This gives us problems when ε1/2 � diam D.
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Local Glivenko-Cantelli

However, we only see φ on a small part of the domain!

(gε/2 ∗ ψ)(x) = gε/2 ∗ (1B(x ,l
√
ε)ψ) +O(e−Cl

2
)‖ψ‖L1 .
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Local Glivenko-Cantelli

We really just want a set of radius l
√
ε, where l grows

logarithmically.

Bx ,lε := {bd. analytic functions on BR(x , l
√
ε)+BC(0,

√
ε/2)} ⊃ Bε.

with
log #(Bx ,lε , ξ) = O

(
(l log ξ−1)d

)
and we are in business:

sup
‖φ‖Bε=1

∣∣∣(Kεφ−KM
ε φ)(x)

∣∣∣ ≤ Cε−d/4

M1/2
N

#(Bx,lε ,ξ)
+ Cε−d/2ξ + Ce−Cl

2

= O
(
ε−d/4M−1/2(logMε−1)d−1/2

)



Local Glivenko-Cantelli

We can use an easier compactness argument to extend to a
supremum over all x , giving

δ :=
∥∥∥(Kε/2φ−KM

ε/2)φ
∥∥∥
Bε→C0

= O
(
ε−d/4M−1/2(logMε−1)d−1/2

)
= appropriately small

All discretisation errors are then controlled by δ! In particular,

‖PM
ε − Pε‖Bε = O(δ).



Comments

Result: convergence of spectral data, complex operator problems,
etc. at near-pointwise rates.

I Requires very smooth kernel with exponentially decaying tails.

I Will generalise nicely to curved manifolds.

I Argument not based on Markov normalisation.

I Specialisation to Markov kernels would improve by O(ε1/2)
factor (Singer ’06, Calder and Trillos ’20).



Bias error analysis

Our weight vectors u, v are interpolated by functions UM
ε ,V

M
ε

which converge to Uε,Vε as M →∞.
Have infinite limit

Pεφ = VεKε[Uεφ].

Want to show that as ε→ 0

Pε → eεL.
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Bias error analysis

Know L is generator of SDE for invariant density p

dX = −1
2∇p dt + dWt

We can study Pt/ε
ε as the evolution operator of a (time-varying)

SDE.



Bias error: SDE formulation

Let
est = gt ∗ (ρUε) = et∆/2(ρUε).

Then ρUε = es0 and Vε = e−sε .

Pεφ := Vεgε ? (ρUεφ) = e−sεeε∆/2es0φ

is time-ε operator of forward equation of SDE

dXt = −∇st dt + dWt

So Pt/ε
ε is the time-t operator of

dXt = −∇sε{t/ε}︸ ︷︷ ︸
fast, periodic

dt + dWt



Bias error: SDE formulation

Time-average with O(tε2) error:

dXt ≈ −∇s̄ dt + dWt

s̄ = 1
ε

∫ ε

0
st dt

= 1
2 (s0 + sε) +O(ε2)

= 1
2 log(ρUε/Vε) +O(ε2)

I Typically we fit es0/ρ = Uε ≈ p1/2/ρ. Since sε = s0 +O(ε),
get O(ε) error (for ρ ∈ C 3/2+α).

I Optimally accurate approximation is O(ε2), obtained via
fitting weight ratio: Uε/Vε = p/ρ.



Bias error: SDE formulation

Time-average with O(tε2) error:

dXt ≈ −∇s̄ dt + dWt

s̄ = 1
ε

∫ ε

0
st dt

= 1
2 (s0 + sε) +O(ε2)

= 1
2 log(ρUε/Vε)︸ ︷︷ ︸
want =

1
2 log p

+O(ε2)

I Typically we fit es0/ρ = Uε ≈ p1/2/ρ. Since sε = s0 +O(ε),
get O(ε) error (for ρ ∈ C 3/2+α).

I Optimally accurate approximation is O(ε2), obtained via
fitting weight ratio: Uε/Vε = p/ρ.



Bias error: SDE formulation

Time-average with O(tε2) error:

dXt ≈ −∇s̄ dt + dWt

s̄ = 1
ε

∫ ε

0
st dt

= 1
2 (s0 + sε) +O(ε2)

= 1
2 log(ρUε/Vε)︸ ︷︷ ︸
want =

1
2 log p

+O(ε2)

I Typically we fit es0/ρ = Uε ≈ p1/2/ρ. Since sε = s0 +O(ε),
get O(ε) error (for ρ ∈ C 3/2+α).

I Optimally accurate approximation is O(ε2), obtained via
fitting weight ratio: Uε/Vε = p/ρ.



Bias error: SDE formulation

Time-average with O(tε2) error:

dXt ≈ −∇s̄ dt + dWt

s̄ = 1
ε

∫ ε

0
st dt

= 1
2 (s0 + sε) +O(ε2)

= 1
2 log(ρUε/Vε)︸ ︷︷ ︸
want =

1
2 log p

+O(ε2)

I Typically we fit es0/ρ = Uε ≈ p1/2/ρ. Since sε = s0 +O(ε),
get O(ε) error (for ρ ∈ C 3/2+α).

I Optimally accurate approximation is O(ε2), obtained via
fitting weight ratio: Uε/Vε = p/ρ.



Sinkhorn problem

Since by Markov constraint V = 1/(KU), this means solving
symmetric Sinkhorn problem for U:

U × (KU) = p/ρ.

I Only need ρ, p ∈ C 2+α for O(ε2) eigendata convergence.

I Fast iterative algorithm to compute U.

In paper: p = ρ, i.e. L generates Langevin diffusion on ρ.

I P symmetric (U = V )

I P bistochastic (i.e. gives reversible Markov chain)

.
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Comments

I In practice variance error O(M−1/2ε−d/4−1/2) will dominate
bias error O(ε2)!

I Expect convergence speed-up to work for symmetric kernels
with correct 4th moments

I Only expect O(ε) convergence on curved domains



Paper

We give, albeit in fairly specific setting, operator convergence with:

I Near-pointwise convergence rates for variance error

I Optimal convergence rates/choice of weights for bias error

In paper: proof of spectral convergence rates for standard and
bistochastic normalisations.
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