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Abstract. Markov expanding maps, a class of simple chaotic systems,
are commonly used as models for chaotic dynamics, but existing numer-
ical methods to study long-time statistical properties such as invariant
measures have a poor trade-off between computational effort and ac-
curacy. We develop a spectral Galerkin method for these maps’ trans-
fer operators, estimating statistical quantities using finite submatrices
of the transfer operators’ infinite Fourier or Chebyshev basis coefficient
matrices. Rates of convergence of these estimates are obtained via quan-
titative bounds on the full transfer operator matrix entries; we find the
method furnishes up to exponentially accurate estimates of statistical
properties in only a polynomially large computational time.

To implement these results we suggest and demonstrate two algo-
rithms: a rigorously-validated algorithm, and a fast, more convenient
adaptive algorithm. Using the first algorithm we prove rigorous bounds
on some exemplar quantities that are substantially more accurate than
previous. We show that the adaptive algorithm can produce double
floating-point accuracy estimates in a fraction of a second on a personal
computer.

1. Introduction

One-dimensional full-branch Markov uniformly expanding maps are an
important class of chaotic dynamical systems: as well as being common toy
models, complex chaotic systems may be reduced to this class, for example
by inducing. Mathematically, these maps are endomorphisms f on a com-
pact and connected one-dimensional manifold Λ for which there are a set of
disjoint open intervals (Oι)ι∈I of full measure such that the f |Oι are injec-

tive with f(Oι) = Λ, and on the Oι, f is differentiable with |f ′| ≥ λ > 1. A
standard example of such a map is the Lanford map, defined on [0, 1] with
f(x) = 2x+ 1

2x(1− x) mod 1.
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Many significant properties of these maps can be determined from a linear-
algebraic object: the so-called transfer operator L : BV (Λ)→ BV (Λ) with
action

(1) (Lφ)(x) =
∑

f(y)=x

1

|f ′(y)|φ(y),

where BV (Λ) denotes the space of functions of bounded variation on Λ. For
example, the central limit theorem for the long-time average of an observable
φ ∈ BV (Λ) for initial condition x0 sampled from a BV density can be
written ∑n

i=0 φ(f i(x0))− n〈φ〉
σf (φ)

√
n

n→∞−−−→d N(0, 1),

with formulae for the parameters

〈φ〉 :=

∫
Λ
φ ρ dx(2)

σ2
f (φ) :=

∫
Λ
φ

∞∑
n=−∞

L|n|
(

(φ− 〈φ〉) ρ
)
dx,(3)

where the so-called invariant density ρ is the unique 1-eigenfunction of L
with

∫
Λ ρ dx = 1.

Transfer operator problems cannot in general be solved analytically, and
numerical approaches are therefore of prime importance. One scheme that
has been widely studied in the literature is Ulam’s method, whereby one
projects the transfer operator onto a subspace of characteristic functions
(i.e. discretises the phase space) and computes statistical properties on this
discretisation [6]. Ulam’s method is effective for a broad array of families of
chaotic systems [8, 7, 17], and in particular Ulam estimates for a variety of
statistical quantities have been proven to converge for uniformly expanding
maps [7, 2]. Higher-order generalisations of Ulam’s method have also been
used, in particular to compute quantities such as linear response that require
a higher degree of regularity [3]; theory for a wavelet-based method has also
been developed [13]. At the same time, Pollicott, Jenkinson and others have
presented a completely different approach, wherein one computes statistical
properties using the theory of dynamical zeta functions: this involves com-
puting sums over periodic orbits of the system [14, 15]. Zeta function-based
methods have furnished the most accurate estimates in the literature.

The approach we take in this paper is to construct a so-called spectral
Galerkin approximation, whereby one considers the transfer operator of the
dynamical system of interest and functions it acts on in a basis of orthogonal
polynomials and restricts to finite-dimensional spaces EN ≤ BV spanned
by low-index elements in the orthogonal basis.

We consider the Fourier exponential basis ek(x) = eikx, k ∈ Z, which
is orthogonal in L2([0, 2π)), and the Chebyshev polynomial basis Tk(x) =



SPECTRAL GALERKIN METHODS FOR TRANSFER OPERATORS 3

cos k cos−1 x, k ∈ N, which is orthogonal on [−1, 1] with respect to the weight

(1− x2)−1/2.
In our theoretical results we find that, providing the maps under consid-

eration exhibit sufficient regularity, these kinds of spectral methods provide
up to exponentially fast convergence with a small numerical outlay. Our
main theoretical results are that spectral Galerkin estimates of acims and
the 1-resolvent converge exponentially fast in the approximation order N
for analytic maps, and as O(N2.5−r) for Cr maps (we will be more specific
about the kinds of map we consider in Section 2.1). The algorithmic out-
lay of our method is O(N3). These results are summarised respectively in
Corollaries 1 and 2 in Section 2.2.

We obtain these results by defining a so-called solution operator that al-
lows one to access transfer operator resolvent data at eigenvalue 1 (Theorem
1 in Section 2.2), and then showing that spectral Galerkin approximations
of this solution operator converge at the aforementioned rates (Theorem 2).
These rates of convergence are determined via bounds on entries of the spec-
tral basis matrix representations of transfer operators, proved in Theorems
3-4.

This theoretical work carries out some of the directions for further re-
search suggested in [4], which proved convergence of eigenvalue and eigen-
vector estimates of transfer operators of circle maps in a wavelet basis (a
transformation of a Fourier basis). In particular, we extend from periodic
intervals to non-periodic intervals, and establish quantitative convergence
rates for the invariant density and resolvent data at the eigenvalue 1.

To illustrate the power of spectral methods, we apply a rigorously justi-
fied spectral method to the Lanford map to get bounds for the Lyapunov
exponent and diffusion coefficient to 123 decimal places (see Theorem 5 in
Section 2.2).

We also demonstrate that adaptive spectral methods allow for very fast
and user-friendly computation of statistical properties, via an implementa-
tion of transfer operator spectral methods in the Julia package Poltergeist.
Using Poltergeist, the quantities in Theorem 5 may be estimated in under
0.1 seconds on a personal computer to 13 decimal places of accuracy; the
package also allows for computation of a great many statistical quantities
not included here.

The rates of convergence we obtain compare very favourably with other
approaches. While set-based approaches (Ulam’s method) cover a much
larger class of maps than we consider, they have an optimal convergence
rate of only O(log(N)/N) irrespective of regularity, where N is the size of
the Ulam matrix. Spectral methods are also significantly more efficient than
algorithms that use periodic orbits to calculate statistical quantities: in the
case of analytic maps, these algorithms converge superexponentially in the
order (i.e. maximum length of periodic orbits), but the number of periodic
orbits that must be computed, and hence the computational cost, grows
exponentially with the order [15, 14]. In terms of computational power P ,
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which is the relevant quantity in practice, periodic orbit algorithms have

error O(e−k(logP )2) as opposed to the spectral method’s convergence rate of

O(e−kP
1/3

).
Consequently, the illustrative numerical bounds we obtain in Theorem

5 are well beyond the practicable capabilities of other numerical results.
The previous best rigorous bound on the Lyapunov exponent found in the
literature was Lexp = 0.6575±0.0015 obtained by Ulam’s method in [9]; the
diffusion coefficient was calculated in [2] to less than one significant figure of
accuracy and [15], which had an estimate correct to 55 significant figures, of
which 17 were rigorously validated. For comparison, we use a comparable
amount of computational power to obtain 127 and 123 validated significant
figures respectively (see Section 4.1 for further details).

Similarly, our adaptive algorithms provide a much higher degree of ac-
curacy for practical uses than previous algorithms. This is of great use in
broader study of chaotic dynamics, as having rigorous (or at least very reli-
able) algorithms at one’s disposal allows one to easily explore mathematical
phenomena for which analytical results may not yet exist. An example of
such an endeavour is in [10], where the authors make use of a Fourier spec-
tral method to explore a particular rate of convergence in linear response
theory, directing a subsequent proof. We hope that our spectral methods
become a useful tool in theoretical and numerical study of chaotic systems.

There are several further directions for research. Numerical results in-
dicate that the actual rates of convergence are slightly better than what
we prove in this paper (see Section 4.2), and a different theoretical ap-
proach may yield the optimal convergence rates. While our paper is set
in function spaces with bounded variation norms, most of our results are
largely agnostic to the function space used. It would in particular be useful
for justifying linear response estimates to prove convergence of the spectral
method on appropriate scales of spaces. While the convergence of eigen-
values and eigenvectors was proven (without quantitative bounds) in [4],
we also have some numerical evidence for convergence of dynamical de-
terminant estimates. Our results may be extended to higher dimensions,
possibly including maps with contracting directions. A significant problem
with extending to higher dimensions, however, is that the number of basis
functions necessary to compute estimates of a given accuracy will increase
exponentially with the dimension: this may be remediable to a limited ex-
tent by using bases of smooth, compactly-supported wavelets [13, 4], which
could lower the complexity as a result of their sparse structure. Finally,
by constructing efficient numerical inducing schemes, it seems likely that
our methods can provide fast and accurate estimates of statistical proper-
ties for almost all major classes of one-dimensional chaotic maps, such as
non-Markov expanding maps, intermittent maps and quadratic maps.

Our paper is structured as follows. In Section 2 we define the classes of
maps pertinent to our results, and introduce the main theorems. In Section
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3 we describe the algorithms we use that demonstrate the possiblities of
transfer operator spectral methods, and in Section 4 we give illustrative
results from these algorithms. Finally, in Section 5 we prove the theoretical
results of the paper.

2. Set-up and main theorems

In this section, we summarise the paper’s chief mathematical develop-
ments. We will first set up the problem, introducing the maps under con-
sideration. We then present the important results of the paper: Theorem
1 characterising an operator that explicitly solves many typical transfer op-
erator problems; the main theorem, Theorem 2, which gives convergence of
spectral operator estimates and Corollaries 1 and 2, which give convergence
of acims and other statistical properties as a result; and finally Theorems
3 and 4 bounding the magnitude of transfer operator spectral coefficient
matrix entries Ljk, which are central to the proof of Theorem 2. We finally
present two rigorously validated bounds on the Lyapunov exponent and a
diffusion coefficient of the Lanford map, obtained via a rigorous implemen-
tation of our spectral method.

2.1. Systems under consideration. We first introduce the two generic
classes of maps we will consider; we will then introduce a set of so-called
distortion conditions that maps from these classes may optionally hold, and
which determine the spectral method’s rates of convergence.

2.1.1. Classes of maps. We define two main classes of maps: circle maps
UP and interval maps UNP . Maps in UP are defined on the one-dimensional
torus and must be continuous and differentiable on the whole domain, whereas
maps in UNP are defined on a (non-periodic) interval, and there is no re-
quirement for any continuity or differentiability between branches of the
map. For example, a Markovian tent map may lie in UNP , whereas maps in
UP must have a derivative defined everywhere.

A map f : Λ→ Λ is in UP if it satisfies the following axioms:

• Its domain Λ is a circle, which we suppose to be canonically R/2πZ.
• It is piecewise C2 with Lipschitz-bounded distortion, that is,

sup
x∈Λ

|f ′′(x)|
|f ′(x)|3 <∞.

• It is uniformly expanding, that is,

(E) λ := inf
x∈Λ
|f ′(x)| > 1.

Maps in UP are circle maps, and can be extended to bijective lifts f̂ :
[0, 2π] → [0, 2βπ] for some β ∈ {2, 3, 4, . . .}. We denote the inverse of f̂ by
v, and for consistency with the notation for UNP define vι(x) := v(x+ 2ιπ)
for x ∈ [0, 2π] and ι ∈ I := {0, 1, . . . , β − 1}.

A map f : Λ→ Λ is in UNP if it satisfies the following axioms:
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• Its domain Λ is an interval, which we suppose to be the canonical
interval for Chebyshev expansions [−1, 1].
• It is full-branch Markov: recall that this means there are open dis-

joint intervals Oι, ι ∈ I whose union is of full measure in Λ such that
f |Oι extends continuously to a bijective function f̂ι : Oι → Λ.

• These functions f̂ι are all C2 and furthermore, the map f has Lipschitz-
bounded distortion: this is a standard regularity condition necessary
for, among other things, a spectral gap in BV . We will find it useful
to formulate the Lipschitz distortion condition in terms of vι := f̂−1

ι ,
as

(DD1) sup
x∈Λ,ι∈I

∣∣∣∣v′′ι (x)

v′ι(x)

∣∣∣∣ <∞.
• It satisfies a uniform C-expansion condition1

(CE) λ̌ = inf
x∈∪ι∈IOι

√
1− x2√

1− f(x)2
|f ′(x)| > 1.

• It satisfies a partition spacing condition

(P) sup

{ |Oι|
d(Oι, ∂Λ)

: d(Oι, ∂Λ) > 0

}
= Ξ <∞.

The latter two conditions we introduce to control the high oscillatory be-
haviour of the spectral basis functions’ images under the action of the trans-
fer operator near the endpoints of the interval. They are not especially
onerous conditions: uniformly expanding maps typically satisfy (CE), and a
uniformly expanding map satisfying all conditions of UNP except (CE) will
have an iterate in UNP (see Appendix A for a discussion of C-expansion);
(P ) is always satisfied for maps with finitely many branches.

We also consider maps that satisfy the conditions of UP (resp. UNP )
except that the associated expansion parameter in (E) (resp. (CE)) need
only be positive, rather than strictly greater than 1. We denote the class of
such maps ŪP (resp. ŪNP ).

2.1.2. Distortion conditions. To obtain good convergence results we will op-
tionally impose the following generalised distortion conditions on our maps.

The first set of distortion conditions are equivalent to uniform bounds
on derivatives of the distortion log |v′ι|. A map satisfies distortion condition
(DDr) for some r ∈ N+ if

(DDr) sup
ι∈I,x∈Λ

∣∣∣∣∣v(n+1)
ι (x)

v′ι(x)

∣∣∣∣∣ = Cn <∞, n = 1, . . . , r.

The second set of distortion conditions are equivalent to uniform bounds
on the first derivative of the distortion on a complex neighbourhood of the
map’s domain Λ. For circle maps, the neighbourhood is the closed complex

1This condition can be reformulated as requiring |(cos−1 ◦f ◦ cos)′| ≥ λ̌ > 1.
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strip Λβδ = {x+ iy | x ∈ R/2βπZ, |y| ≤ δ}, for a given δ > 0. For intervals,

the neighbourhood is Λ̌δ, defined to be a Bernstein ellipse2 of parameter eδ.
We assume that v′ and v′ι respectively extend holomorphically to these sets.

A map satisfies (ADδ) for some δ > 0 if

(ADδ)

sup
z∈Λβδ

∣∣∣v′′(z)v′(z)

∣∣∣ = C1,δ <∞, Λ = R/2πZ,

supι∈I,z∈Λ̌δ

∣∣∣v′′ι (z)
v′ι(z)

∣∣∣ = C1,δ <∞, Λ = [−1, 1].

We associate with each distortion condition a spectral rate of convergence.
We formulate these rates of convergence κ(·) as function classes:

κ (DDr) =
{
x 7→ C(1 + x)−r : C > 0

}
,(4)

κ (ADδ) =
{
x 7→ Ce−ζx : C > 0, ζ ∈ (0, δ]

}
.(5)

2.2. Main results. We can now formulate the main theoretical results of
this paper, beginning by introducing a novel operator derived from the trans-
fer operator that explicitly generates acims and other statistical properties.

We define the solution operator inverse

(6) K = id−L+ uS

and the solution operator

(7) S = K−1 = (id−L+ uS )−1,

where the functional S is the total Lebesgue integral on Λ and u is a function
in the domain of L such that S u = 1.

Many statistical properties can be computed using resolvent data of L
at its eigenvalue 1: the solution operator inverse is a bounded, invertible
perturbation of id−L which allows the resolvent data to be recovered. For
any transfer operator L with a spectral gap (i.e. with a simple eigenvalue at
1 and the remaining spectrum bounded inside a disk of radius less than 1),
the solution operator therefore solves for two important quantities, according
to the following theorem:

Theorem 1. Let L : E → E be a transfer operator with a spectral gap.
Choose u ∈ E with S u = 1.

Then S = (id−L+ uS )−1 is well-defined and bounded as an operator on
E, and

(a) If ρ is the unique acim with S ρ = 1,

(8) ρ = Su.
(b) For any φ ∈ ker S ,

(9)
∞∑
n=0

Lnφ = Sφ.

2A Bernstein ellipse of parameter ρ > 1 is an ellipse in the complex plane centred at 0 with
semi-major axis of length 1

2
(ρ+ ρ−1) along the real line and semi-minor axis 1

2
(ρ− ρ−1).
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Remark 1. As a result of Theorem 1, many important statistical quantities
can be simply expressed using the solution operator and acim. For exam-
ple, the Green-Kubo formula for diffusion coefficients given in (3) can be
rewritten using Theorem 1(b) as

(10) σ2
f (A) =

∫
Λ
A (2S − id)(id−ρS )(ρA) dx.

This closed formula enables effective rigorous calculation of diffusion coeffi-
cients.

We now provide some notation to enable us to state the main theorem,
which proves the convergence of the spectral methods. We define the finite-
dimensional subspaces (EN )N∈N+

EN =

{
span{e−N , . . . , eN},Λ = [0, 2π)

span{T0, . . . , TN},Λ = [−1, 1]

and the orthogonal projections PN onto the EN in the L2 space in which the
bases are orthogonal (L2([0, 2π]) for the Fourier basis, and L2([−1, 1], (1 −
x2)−1/2) for the Chebyshev basis). We also define the spectral Galerkin
operator discretisations

(11) LN = PNL|EN
and

(12) SN := K−1
N := (id−LN + uS |EN )−1,

where the function u is taken to be in EN . (A typical choice of u is u =
1/|Λ|.)

Our main theorem can then be formulated as follows:

Theorem 2. Suppose f ∈ UP or UNP , and satisfies a distortion bound
(DDr) (resp. (ADδ)). Then there exist functions K, K̄ ∈ κ(DDr) (resp.
κ(ADδ)) such that for sufficiently large N and all φ ∈ EN ,

‖LNφ− Lφ‖BV < N
√
NK(N)‖φ‖BV ,

and

‖SNφ− Sφ‖BV < N
√
NK̄(N)‖φ‖BV .

For ease of expression, in the rest of this section we use the notation (D)
to denote either of (DDr) or (ADδ).

Theorem 2 together with Theorem 1 directly implies the convergence of
estimates of statistical quantities. In particular, the following corollary gives
spectral convergence of the acim.

Corollary 1. Suppose f ∈ UP or UNP , and satisfies a distortion bound (D).
Let ρN = SNu. Then there exists K ∈ κ(D) such that for all N sufficiently

large

‖ρN − ρ‖BV < N
√
NK(N).
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The next corollary gives strong convergence of
∑∞

n=1 Ln, and consequently
many important statistical estimates (see (10) for an example).

Corollary 2. Suppose f ∈ UP or UNP , and satisfies a distortion bound
(D). Then there exists K ∈ κ(D) such that for N large enough and all
φ ∈ EN ∩ ker S ,∥∥∥∥∥SNφ−

∞∑
n=0

Lnφ
∥∥∥∥∥
BV

< N
√
NK(N)‖φ‖BV .

Since the operators LN and SN are endomorphisms on EN , Theorem
2 and Corollary 2 show that the spectral method converges in operator
norm within EN . When attempting to estimate, for example, Sφ for some
φ /∈ EN , one can simply substitute φ for its spectral discretisation PNφ, and
propagate through the calculation the error arising from this substitution.

Critical to proving Theorem 2 are the following bounds on the entries
Ljk of the transfer operator matrix. We state two analogous theorems for
transfer operators on periodic and non-periodic domains: the situation is
illustrated in Figure 1. Abstractly, these results reformulate the characteri-
sation of the transfer operator of a uniformly-expanding map as the sum of
a strictly upper-triangular operator and a compact operator developed by
[13, 4] in the context of C∞ circle maps in wavelet bases. The important
development of our approach is the large amount of quantitative information
generated, which allows us to prove convergence rates and provide rigorous
concrete bounds for specific maps.

Theorem 3. Suppose f is in the class ŪP satisfying some distortion bound
(D), with λ1 ≤ f ′ ≤ λ2. Suppose L is the matrix representing the transfer
operator of f in a Fourier exponential basis.

Then for every p1 > λ−1
1 and p2 < λ−1

2 there exists K ∈ κ(D) such that
for j/k > p1 or k = 0,

|Ljk| ≤ K(|j − p1k|),
and for j/k < p2 or k = 0,

|Ljk| ≤ K(|j − p2k|).

Theorem 4. Suppose f is in the class ŪNP , satisfying some distortion
bound (D). Suppose L is the matrix representing the transfer operator of f
in a Fourier exponential basis.

Then for every p > λ̌ there exists K ∈ κ(D) such that for j/k > p or
k = 0,

|Ljk| ≤ K(|j − pk|).
Remark 2. One can prove similar results for transfer operators with general
weights (c.f. (1)):

(13) (Lgφ)(x) =
∑

f(y)=x

g(y)φ(y).
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0

k

0j

j =
λ −11 k

j = λ−1
2 k

j =
p
1k

j = p2k

(a)

0

k

0

j

j = λ̌−1
k

j = pk

j = pk + C

(b)

Figure 1. Heatmaps of maximum possible magnitudes of
coefficients Ljk of transfer operator matrix of a system de-
scribed in: (a) Theorem 3; (b) Theorem 4. Shown are con-
tours of constant magnitude of coefficients (thin black lines)
and, in grey block colour, coefficients not characterised by
the theorems. Note that because the full Fourier and Cheby-
shev bases are indexed by Z and N respectively, the matrix
indices range over these values.

This class of operator includes transfer operators and composition operators
Cv : φ 7→ φ ◦ v.

From the previous results, we are able to prove extremely accurate rigor-
ous bounds on maps in UP and UNP satisfying sufficiently strong distortion
conditions. In particular, we prove the following bound on the Lanford map:

Theorem 5. Consider the Lanford map f : [0, 1] → [0, 1], f(x) = 2x +
1
2x(1− x) mod 1.

(a) The Lanford map’s Lyapunov exponent Lexp :=
∫

Λ log |f ′| ρ dx lies in the
range

Lexp = 0.657 661 780 006 597 677 541 582 413 823 832 065 743 241 069

580 012 201 953 952 802 691 632 666 111 554 023 759 556 459

752 915 174 829 642 156 331 798 026 301 488 594 89± 2× 10−128.
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(b) The diffusion coefficient for the Lanford map with observable φ(x) = x2

lies in the range

σ2
f (φ) = 0.360 109 486 199 160 672 898 824 186 828 576 749 241 669 997

797 228 864 358 977 865 838 174 403 103 617 477 981 402 783

211 083 646 769 039 410 848 031 999 960 664 7± 6× 10−124.

These bounds are derived in Section 4.1.

3. Algorithms

Our results suggest a variety of possible algorithms to capture, given a
map, statistical properties that can be expressed as Sφ for some φ, such as
acims (8) and diffusion coefficients (10). We present two possible algorithms
a practitioner might wish to use to calculate invariant measures: one that
gives rigorous bounds on statistical properties but is somewhat cumbersome
for exploratory use, and one that gives accurate but non-validated estimates
that is much more convenient to use. In this section we describe the two
algorithms, and then explain how in both algorithms we calculate elements
of the transfer operator matrix. We will demonstrate the algorithms in
Section 4.

Algorithm 1 is a traditional fixed-order spectral method, implemented
in interval arithmetic. It requires as input the map inverses vι and their
derivatives, a spectral order N , various bounds associated with elements of
the transfer operator, and a bound on the norm of the solution operator3 S;
it then outputs an estimate for the acim ρ with a rigorously validated BV
error.

By contrast, Algorithm 2 is an adaptive-order spectral method that is not
rigorously validated: it uses an adaptive QR factorisation of the solution
operator inverse K to solve the linear problem and test for convergence
[19, 12]. It requires as input only an algorithm to calculate the map f and
outputs an estimate for ρ whose error is not rigorously bounded but is of
the order of ‖S‖BV ε1−θ, where ε is the floating-point precision and θ is a
small number depending on the order of differentiability of f .

Algorithm 2 is extremely well-suited for numerical exploration. Because
the only required input is the map itself, Algorithm 2 requires a minimum
of drudge work on the part of the user. It is typically also extremely fast:
just with a personal computer, Algorithm 2 gives estimates of statistical
quantities of a simple analytic map accurate to 14 decimal places in less
than one-tenth of a second (see Section 4). Because our spectral methods are
very accurate in an easily verifiable way, an adaptive, non-validated method

3Available theoretical bounds typically scale exponentially with the distortion bound C1

(see [16] and Appendix D). However, at least in the analytic case, the spectrally fast con-
vergence dominates the large theoretical bounds. It is only necessary to control floating-
point error using an appropriately high numerical precision. Alternatively and more gen-
erally, one may apply the approach of [9].
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Input: Map inverses and derivatives vι, v
′
ι, ι ∈ I; spectral order N ;

aliasing bounds A
(N)
jk for j, k = 1, . . . , N ; bound bS ≥ ‖S‖BV ;

bound bEN ≥ ‖EN‖BV (see Lemma 3); bounds bLjk ≤ |Ljk|.
Output: High-precision floating-point vector ρ̃ containing spectral

coefficients of acim estimate; rigorous BV error bound ε̄obs

1 Check that bEN bS < 1: if this is not the case increase N ;

2 Set the number of floating-point bits to be greater than

− log2(N4 ∗ bEN );

3 Initialise N ×N matrix of intervals L(N);

4 for k ← 1 to N do

5 Calculate interpolant values q(k,N) = {L(bk)(xl,N )}Nl=1 in interval

arithmetic, using (1);

6 Calculate spectral coefficients of the interpolant

p(k,N) = FFT (q(k,N)) (DCT (q(k,N)) in the Chebyshev case);

7 for j ← 1 to N do

8 Calculate spectral coefficient matrix entry L
(N)
jk as q

(k,N)
j plus

aliasing error [−A(N)
jk , A

(N)
jk ];

9 Refine interval estimate L
(N)
jk by intersecting it with

[−bLjk, bLjk];
10 end

11 end

12 Calculate u(N) = {[δj0/|Λ|, δj0/|Λ|]}Nj=1;

13 Calculate row vector of intervals S (N) = (S bj)
N
j=1 using standard

formulae [21];

14 Calculate the spectral coefficient matrix of S−1
N ,

K(N) = I − L(N) + S (N)u(N), where I is an N ×N identity matrix;

15 Calculate ρ(N) = K(N)\u(N);

16 Calculate ρ̃ = {midpoint(ρ
(N)
j )}Nj=1;

17 Calculate a bound ε̄interval > ‖ρ(N) − ρ̃‖BV ;

18 Calculate ε̄finite = 1/(1/(bEN bS)− 1);

19 Calculate ε̄obs = ε̄interval + ε̄finite;

Algorithm 1: Rigorous algorithm to capture invariant measures.

is also highly reliable. We have consequently made an implementation of
Algorithm 2 available in the open-source Julia package Poltergeist [22].

In the presentation of the algorithms and the following discussion we
assume that the Fourier and Chebyshev spectral bases have been relabeled
as (bk)k∈N+ . We also implicitly assume that the Fourier exponential basis
has been transformed to sines and cosines so that real functions have real
spectral coefficients.
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Input: Map f ; map derivative f ′ (optional; may be calculated
automatically using dual number routines [20]); tolerance ε

Output: Adaptive order kopt; floating-point vector ρ̃ containing
spectral coefficients of acim estimate ρ̃Nopt

# Extendable vectors encode an infinite vector with

finitely many non-zero entries, ragged matrices’

columns are extendable vectors. These will encode

infinite-dimensional objects approximating u, K.
1 Initialise empty ragged matrix H, which will hold Householder

vectors for row-reduction;

2 Initialise empty ragged matrix K̂, which will hold row-reduced

coefficients of solution operator inverse K;

3 Calculate extendable vector û = (δj1/|Λ|)j≥1 containing coefficients

of u that will be progressively row-reduced;

4 Set k, the number of columns of matrix K̂, to be 0;

5 repeat # Loop between calculating columns of K̂ and

row-reducing

6 Increment k by 1;

7 Set the interpolation order M = 4;

8 repeat # Calculating optimum order interpolant of Lbk
9 Set M ← 2M ;

10 Calculate values of the interpolant q(k) = {L(bk)(xl,M )}Ml=1

using (1) with Newton iteration for the transfer operator;

11 Calculate spectral coefficients of the interpolant

p(k) = FFT (q(k)) (DCT (q(k)) in the Chebyshev case);

12 until the interpolant has converged according to the reasoning in

[1] ;

13 Calculate κ(k), which will become the kth column of K̂, as an

extendable vector {δjk + Skδj1}j≥1 − p(k), where Sk = (S bk) is
calculated from Chebyshev and Fourier integral formulae [21];

14 Apply previous Householder transformations encoded as column

vectors of H to κ(k);

15 Calculate Householder vector h that will row-reduce κ(k)

considered as the kth column of K̂;

16 Apply h to κ(k);

17 Right-concatenate κ(k) onto K̂;

# Note K̂ is row-reduced and so upper-triangular

18 Apply h to û;

19 Right-concatenate h onto H;

20 until max{uj}j≥k+1 ≤ ε/|Λ|−1 # i.e. negligible benefit from

larger k;

21 Set Nopt = k;

22 Calculate ρ̃ = {K̂jk}Nopt

j,k=1\{ûj}
Nopt

j=1 via backsolving;

Algorithm 2: Algorithm to capture invariant measures using adap-
tive interpolation and infinite-dimensional adaptive QR solver.
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In both algorithms, one calculates LN by columns, using that the kth
column of LN consists of the first N spectral coefficients of Lbk. The most
effective way to estimate these coefficients is by calculating an interpolant.
The idea of this is as follows. Using (1) one evaluates the function Lbk at
N special interpolation nodes xl,N : in the Fourier case these interpolation
nodes are evenly-spaced on the periodic invterval (in the Chebyshev case
respectively, Chebyshev nodes of the first kind) [21, 5]. One then applies
the Fast Fourier Transform (resp. Discrete Cosine Transform) to the vector
((Lbk)(xl,N ))l=1,...,N . The resulting length-N vector contains the spectral

coefficients of the unique function p(k,N) ∈ EN which matches Lbk at the
interpolation nodes. The so-called interpolant p(k,N) is a close approximation
of Lbk: the difference between the jth spectral coefficient of p(k,N) and
that of Lbk (the so-called aliasing error) is guaranteed to be smaller than
some bound Ajk;N . This bound can be determined from aliasing formulae
standard in approximation theory [21] combined with bounds on higher-
order spectral elements of Lbk (e.g. from Theorems 3-4).

These algorithms generalise very easily to other transfer operator prob-
lems of the form ψ = Sφ: see for example the formula for diffusion coeffi-
cients (10). This can be done by formulating the problem as Kψ = φ and
thus substituting ρ and u (when it is not constituting the solution operator)
for ψ and φ respectively in the algorithms.

4. Numerical results

In Section 4.1 we will prove some rigorous bounds on basic statistical
properties of the Lanford map using the rigorous Algorithm 1; we will then
demonstrate the adaptive Algorithm 2 using the Lanford map and a non-
smooth circle map, assessing the adaptive algorithm’s accuracy and the spec-
tral method’s rate of convergence.

4.1. Rigorous bounds on statistical quantities: the Lanford map.
The Lanford map, f : [0, 1]→ [0, 1]

f(x) = 2x+
1

2
x(1− x) mod 1

is a common test case for rigorous estimation of statistical quantities of maps
[9, 15, 2]. By linearly rescaling of [0, 1] onto [−1, 1] we can apply our spectral
method to it.

The Lanford map’s uniform expansion parameter is λ = 3
2 and its distor-

tion bound (on [0, 1]) is C1 = 4
9 . Applying (47), we find that ‖S‖BV ≤ 9235.

By considering explicit bounds that will be given in Lemma 1, we chose
ζ = cosh−1 7

4 , as it is close to the optimal value for ζ given in Remark 7.
We then used a symbolic mathematics package to show that as a result of
Remark 7,

(14) |Ljk| ≤ tj

√
7 +

√
33

2
ecosh−1(4−

√
6)k−cosh−1 7

4
j .
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To calculate an estimate of the acim of this map, we implemented Al-
gorithm 1 with N = 2048. We found the truncation error was ‖EN‖BV ≤
6.75 × 10−133, and chose the floating-point precision to be 512 significand
bits.

Consequently, we obtained an acim estimate ρ̃ with the rigorously vali-
dated error bound

‖ρ̃− ρ‖BV ≤ 6.3× 10−129.

This estimate is plotted in Figure 2. The Chebyshev coefficients of ρ̃ are
available in Lanford-acim.zip.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
∞
(x
)

Figure 2. The density of the absolutely continuous invari-
ant measure for the Lanford map, obtained by Algorithm
1.

We then used this estimate to calculate the Lyapunov exponent of the
Lanford map

Lexp =

∫
Λ

log |f ′(x)|ρ(x)dx.

using Clenshaw-Curtis quadrature on ρ̃ log |f ′| = ρ̃ log(2 − 3x) [21]. This
provided the rigorous estimate given in Theorem 5(a).

We then calculated the diffusion coefficient of the observable φ(x) = x2

by evaluating the natural finite-order approximation of formula (10), using
Clenshaw-Curtis quadrature. obtaining the rigorous bound given in Theo-
rem 5(b).

The results together were obtained in 9 hours over 15 hyper-threaded cores
of a research server running 2 E5-2667v3 CPUs with 128GB of memory. The
most time-consuming operation was inverting the solution operator inverse
matrix K2048: this process took up 94% of the runtime, which may stem
partly from using an unoptimised routine. Once K−1

2048, i.e. the solution
operator matrix, was supplied, all the statistical quantities were calculated
on a personal computer in seconds.

Lanford-acim.zip
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4.2. Adaptive algorithms. We now present results from the adaptive Al-
gorithm 2, and illustrate the algorithm’s convergence by comparison with a
fixed-order version of Algorithm 2.

We have implemented Algorithm 2 in Julia, an open-source dynamic sci-
entific computing language. This implementation is publically available in
the package Poltergeist [22]. Poltergeist is integrated with ApproxFun, a
comprehensive function approximation package written in Julia [18]; thus,
standard manipulations of functions and operators may readily be applied
to invariant measures, transfer operators and so on.

Using Poltergeist, we present empirical convergence results for the Lan-
ford map (for comparison with rigorous methods), and a circle map which
is C4 but not analytic.

4.2.1. The Lanford map. The Lanford map experiment in Section 4.1 can
be repeated in Poltergeist in a few lines of Julia code:

using Poltergeist, ApproxFun

f_lift(x) = 5x/2 - x^2/2; d = 0..1

f = modulomap(f_lift,d);

K = SolutionInv(f);

rho = acim(K);

L_exp = lyapunov(f,rho)

sigmasq_A = birkhoffvar(K,Fun(x->x^2,d))

This code instantiates a MarkovMap object f and creates a QROperator

object K, which stands in for the corresponding solution operator inverse K
(recalling the definition of the solution operator inverse (6)). The acim func-
tion carries out Algorithm 2 by calling ApproxFun’s adaptive QR solver [12]
on the equation Kρ = u. The output is an ApproxFun Fun object containing
ρ̃N , the Chebyshev coefficients of the adaptive acim estimate. The Lyapunov
exponent and diffusion coefficient are calculated using special commands de-
fined in the package that call appropriate ApproxFun integration and QR
solving routines, in the latter case via (10). Once this the relevant functions
have compiled using Julia’s just-in-time compiler, the last five lines of the
code will run in less than 0.12 seconds on a personal computer.

By applying Algorithm 2 with fixed orders N , the exponential conver-
gence of ρN with N predicted in Theorem 2 was seen to hold in practice.
Indeed, only Nopt = 24 columns of the transfer operator were required for
convergence using Algorithm 2 (see Figure 3).

The Algorithm 2 estimate for ρ is in fact remarkably accurate: the `∞

error on Chebyshev coefficients is less than 8 × 10−15 (40 times the float-
ing point precision) and the BV error on the acim estimate is 3 × 10−13

(around 1300 times the floating point precision). The Lyapunov exponent
estimate was correct almost to within the floating point precision, with the
error compared to the rigorous estimate being 2.2× 10−16: this level of ac-
curacy appears fortuitous rather than representative. More realistically, the
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estimate for σ2
f (A) was accurate to about 25 times floating point precision

(1.4× 10−15).

0 10 20 30 40

N

10−12

10−10

10−8

10−6

10−4

10−2

100

‖ρ
N
−
ρ
∞
‖ B

V

Figure 3. Exponential convergence with N of floating-point
estimates of ρN for the Lanford circle map. The error of the
adaptive estimate for ρNopt from Algorithm 2 is shown as a
cross for comparison.

4.2.2. A non-analytic circle map. We now consider a circle map which does
not satisfy an analytic distortion condition (ADδ) but rather a differentiable
distortion condition (DDr).

Define the uniformly expanding, triple-covering circle map g : [0, 2π) →
[0, 2π) via the inverse of its lift:

vg(x) =
x

3
+
∞∑
m=0

2−
33
8
m cos

(
2m
(

1− cos
x

3

))
.

The map g is C4.125−ε and thus satisfies distortion condition (DD3) but not
(DD4).

We implement the acim-finding process in a similar fashion to the Lanford
map, although to optimise for speed we also supply CircleMap with the
derivative for the lift:

g = CircleMap(v_g,0..2pi,diff=v_g_dash,dir=Reverse)

Lg = Transfer(g);

rho_g = acim(Lg);

This routine took approximately 9 minutes to run on a personal computer
and required the evaluation of Nopt = 2747 columns of the transfer oper-
ator. It produced an acim estimate (plotted in Figure 4) whose BV error
we estimate to be approximately 4.8 × 10−10, by comparison with an esti-
mate obtained using high-precision floating-point arithmetic and N = 6144
columns.
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Figure 4. Invariant measure estimate for g using Algorithm 2.
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Figure 5. The convergence with N of floating-point esti-
mates of ρN for g. The error of the adaptive estimate for
ρNopt using Algorithm 2 is plotted with a cross. The slope

of a function K(N) = CN−2.125 is plotted with a dashed
line. Error estimates are by comparison with an N = 6144
high-precision floating point acim estimate.

The convergence of ρN is illustrated in Figure 5. The BV error on ρN is
estimated to be O(N ε−2.125), which is better than the Theorem 2 estimate
of O(N−1.5). We conjecture that acim estimates of Cr+α circle maps (i.e.
those satisfying “(DDr−1+α)”) converge in BV as O(N2−r−α logN).

Remark 3. Numerical experiments demonstrate that eigenvalues and eigen-
functions of LN converge in norm to those of L, as proved in the periodic
case by [4]. The observed rates of convergence are the standard spectral rates.
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5. Proofs of results

Our attack on the theorems in Section 2.2 is structured as follows.
We begin by proving Theorem 1 characterising the solution operator. This

proof uses standard linear-algebraic properties of transfer operators.
We then turn to proving the entry bound results (Theorems 3 and 4).

These results stem from more general properties of Fourier series representa-
tions of composition operators (Lemma 1), which we prove using oscillatory
integral techniques. Because it is necessary to make a non-diffeomorphic co-
sine transformation to obtain Fourier basis functions from Chebyshev poly-
nomials, some work is required to prove appropriate bounds on derivatives
after the transformation.

We then go on to prove Theorem 2. We consider a perturbation of the
transfer operator L that is block-upper-triangular in the relevant spectral
basis (in the Fourier case, under the basis order e0, e1, e−1, e2, e−2, . . .), with
the finite matrix LN forming the first block on the diagonal. Since the
solution operator of such a perturbation is a composition of upper block-
diagonal operators, the first diagonal block can thus be approximated only
from knowledge of LN (Lemma 3). Using that the BV -norm of our per-
turbation can be bounded using spectral matrix coefficients (Lemma 4), we
obtain the main result.

We begin with the proof of Theorem 1, which gives the properties of the
solution operator S = (I − L+ uS )−1 (see (7)).

Theorem 1. Split E as V⊥ ⊕ V where V⊥ = span{u} and V = ker S . Since
V⊥ and V are closed subspaces of E there exists a bounded operator N :
E → V⊥ such that one may also define id−N : E → V . We now consider
the action with respect to this splitting of the putative solution operator
inverse, K = id−L+ uS .

Since S (L − id) = 0, we have for any element φ ∈ V that

(15) Kφ = (id−L)φ+ uS φ = (id−L)|V φ ∈ V.
Similarly, for any scalar α we have

(16) Kαu = (id−L)(αu) + uSαu = αu+ (id−L)(αu),

where the sum follows the splitting of E = V⊥ ⊕ V .
Since the transfer operator L has a spectral gap, the spectral radius of

L|V is strictly less than 1, and the operator

Q := (id−L|V )−1 =
∞∑
n=0

Ln|V

is bounded as an endomorphism on V .
Back-solving (15-16) thus gives that for any ψ ∈ V ,

Sφ = K−1ψ = Qψ,
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and for any scalar α that

Sαu = αu−Q(id−L)αu = lim
n→∞

Lnαu = αρ.

Since αρ = ρS (αu), we can use these results to write the solution oper-
ator

(17) S = Q(id−N ) + ρSN ,
which is clearly bounded.

It clearly follows from (17) that Su = ρ and Sφ = Qφ for φ ∈ V . � �

Remark 4. The solution operator can be written as the following expression

(18) S = uS +

∞∑
n=0

Ln(id +(Lu− 2u)S ).

We now set about proving Theorems 3 and 4, which place bounds on
the magnitudes of the entries of transfer operator matrices in Fourier and
Chebyshev bases.

We begin by proving similar kinds of bounds on the coefficients of a matrix
associated with a more general operator M on the circle R/2πZ. M can
be viewed as a generalised transfer operator (13) where instead of using
the inverse of the map, one uses a general function v which may be non-
injective. Bounds on elements of the Fourier basis transfer operator matrix
forM imply similar bounds on transfer operators in Fourier and Chebyshev
bases.

Lemma 1. Let v be a differentiable function from R/2βπZ, β ∈ Z+ to
R/2πZ such that v′(R/2βπZ) = µ̃ = [µ2, µ1], and let h be a continuous
function on the circle R/2βπZ.

Let M be the endomorphism on L2([0, 2π]) defined by

(19) M : φ 7→
β∑
b=1

h (x+ 2πb)φ (v (x+ 2πb)) .

Let M be the corresponding bi-infinite matrix in the Fourier complex ex-
ponential basis.

Then:

(a) The entries of M are bounded uniformly by ‖h‖1/2π.

(b) Suppose that for n = 1, . . . , r, sup |v(n+1)| ≤ Υn <∞ and sup |h(n)/h| ≤
Hn <∞. Then there exist constants Wr,n such that for j /∈ kµ̃,

(20) |Mjk| ≤
‖h‖1
2π

r∑
n=0

Wr,n|k|n
d(j, kµ̃)n+r

.

Each Wr,n is bounded by a linear combination of Hl, l ≤ r−n, whose
coefficients are polynomials in Υl, l ≤ r − n.
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(c) Suppose v and h extend analytically to the complex strip Λβδ = [0, 2βπ)+
i[−δ, δ], and on this strip sup |h′/h| ≤ H1,δ < ∞ and sup |v′′| ≤ Υ1,δ <
∞.

Choose any p̃ = [p1, p2] such that µ̃ ⊂
∫
p̃.

Define ζ = min
{

2Υ−1
1,δd(µ̃,R\p̃), δ

}
.

Then ζ > 0 and

(21) |Mjk| ≤
‖h‖1
2π

eζ(H1,δ−d(j,p̃)).

Lemma 1. The matrix element Mjk is the jth Fourier coefficient of the func-
tion Mek, so using the orthogonality of Fourier bases in L2 and (19), we
have that

Mjk =
1

2π

∫ 2π

0

β∑
b=1

h (x+ 2πb) eikv(x+2πb)e−ijxdx,

which using the 2π-periodicity of eijx we can rewrite as a single integral

(22) Mjk =
1

2π

∫ 2βπ

0
h(x)ei(kv(x)−jx)dx.

We obtain (a) from this equation simply by taking absolute values.
For (b), we use that the integrand in (22) is oscillatory when the derivative

of kv(x) − jx is bounded away from zero, that is, when j/k /∈ [µ2, µ1]. As
a result, we can improve the bound we got in the first part by repeatedly
integrating by parts.

Starting from (22), we separate the integrand into two terms(
h(x)

i(kv′(x)− j)

)(
i(kv′(x)− j)ei(kv(x)−jx)

)
,

so as to integrate by parts, differentiating the left term and integrating the
right. Because the right term integrates to zero, the boundary terms in the
integration by parts formula cancel, and we are left with an integral of the
same form as (22) on which we can repeat the process. Thus we obtain a
family of expressions

Mjk =
(−1)n

2π

∫ 2βπ

0
hn(x)ei(kv(x)−jx)dx, n ≤ r,

with each hn being (r−n)-times differentiable and defined by the recurrence
relation

h0 = h, hn+1 = −i
[

hn
j − kv′

]′
.

We find by induction that

hn = in
n∑
l=0

klwn,l(x)

(j − kv′(x))n+l
,
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with wn,l having the recurrence relation

wn,l = w′n−1,l + (n+ l − 1)v′′wn−1,l−1, 0 < l < n,

wn,0 = w′n−1,0, n > 0,

wn,n = 2nv′′wn−1,n−1, n > 0,

w0,0 = h.

By induction, we see that each wn,l has the form

wn,l =
n−l∑
l′=0

ωn,l,l′(v
′′, . . . , v(n−l+2))h(l′),

where ωn,l,l′ are degree l homogeneous polynomials with positive coefficients.
(The ωn,0,l′ are constants as a result, and thus issues of existence of deriva-
tives do not arise.)

Setting

Wn,l = sup
x∈[0,2π]

|wn,l(x)|
|h(x)| ≤

n−l∑
l′=0

ωn,l,l′(Υ1, . . . ,Υn−l+1)Hl′ ,

we have

|Mjk| ≤
1

2π

∫ 2βπ

0

n∑
l=0

Wn,l|h(x)||k|l
|j − kv′(x)|n+l

dx,

from which (20) follows by Hölder’s inequality.
For (c), we use the 2βπ-periodicity of the integrand of (22) to move the

contour of integration. When j/k < p2, we shift the contour of integration
by −iζ sgn k in the complex plane so

(23) Mjk =
1

2π

∫ 2βπ

0
h(x− iζ sgn k)eikv(x−iζ sgn k)−ij(x−iζ sgn k)dx.

We now use our bounds on derivatives of h and v to bound elements of
this expression, beginning with the argument of the exponential.

Applying Taylor’s theorem to =v(x+ iξ), we have

=v(x− iζ sgn k) = −ζ sgn kv′(x)− 1

2
ζ2=v′′(ξ)

for some ξ ∈ Λβδ . This gives us that

<(ikv(x− iζ sgn k)) ≤ ζk sgn k|v′(x)|+ |k|1
2
ζ2Υ1,δ

≤ ζ|k|
(
µ1 +

ζΥ1,δ

2

)
≤ ζ|k|p1,

where the last inequality results from the definition of ζ in the statement of
the lemma.
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We can bound h(x−iζ sgn k) by using that the Lipschitz constant of log h

on Λβδ is sup |h′/h| ≤ H1,δ. As a result,

|h(x− iζ sgn k)| ≤ |h(x)|e|iζ sgn k|H1 = |h(x)|eζH1,δ .

Thus when we take absolute values on (23) we obtain that

|Mjk| ≤
1

2π

∫ 2βπ

0
|h(x)|eζH1,δeζ sgn k(kp1−j)dx.

Using that sgn k = sgn(j − p1k) for j > p1k and Hölder’s inequality yields
(21).

The proof of (c) for j/k < p2 is analogous, with the contour shifted in the
opposite direction.

� �

Given Lemma 1, Theorem 3 is an elementary result. It is necessary only
to check that the conditions for the theorem imply the conditions for the
lemma, and vice versa for the results.

Theorem 3. From (1), the transfer operator L of a map f ∈ ŪP has action

Lφ(x) =

b∑
n=1

σv′(x+ 2bπ)φ(v(x+ 2bπ)),

where σ = sgn v′(0). (Note that v is monotonic and so σv′ = |v′|).
Since λ−1

2 < |v′| < λ−1
1 , we can apply Lemma 1 with h = σv′.

Suppose that f satisfies (DDr). Then we can set Υn = Cn for all n ≤ r,
as the definition of Cn in (DDr) and of Υn in Lemma 1 are the same. We
can also set

|vn+1| ≤
∣∣∣∣∣v(n+1)

v′

∣∣∣∣∣ |v′| ≤ Cn
min{|λ1|, |λ2|}

= Hn <∞.

This gives us what we need for Lemma 1(b), and so there exist Wr,n such
that

Ljk ≤
‖v′‖1
2π

r∑
n=0

Wr,n|k|n
|j − λ−1

m k|n+r

where λm is λ1 for j/k > λ−1
1 and λ2 for j/k < λ−1

2 .
We can eliminate the sum by using that for j/k > p1,

|k|r
|j − λ−1

m k|r
=

1

|j/k − λ−1
1 |r

≤ 1

(p1 − λ−1
1 )r

,

and similarly for p2. Furthermore, since v′ does not change sign, ‖v′‖1 =
|v(2πβ)− v(0)| = 2π.

Thus there exists a constant C depending on the distortion constants Cr,
expansion bounds λ1,2 and constants p1,2 such that for j/k /∈ [p2, p1] or
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k = 0,

Ljk ≤
C

|j − λ−1
m k|

≤ C

|j − p−1
m k|

,

which implies the bound for maps in (DDr) from Theorem 3.
Similarly, suppose that f satisfies (DDr). Then Υ1,δ = C1,δ <∞, and

sup
v∈Λβδ

∣∣v′∣∣ ≤ eδC1,δ · sup
x∈[0,2βπ)

|v′(x)| <∞,

and hence by Lemma 1(c) there exists C > 0 and ζ ∈ (0, δ] such that for

j/k > p1, |Ljk| < Ce−ζ|j−p2k|, and similarly for j/k < p2. � �

Theorem 4 also follows from Lemma 1, since we can piggyback off the
relation between Chebyshev polynomials and Fourier series:

Tk(cos θ) =
1

2
eikθ +

1

2
e−ikθ.

However, because the cosine function on [0, 2π) is two-to-one with critical
points at 0 and π, the proof is less straightforward than for Theorem 3. In
particular, we will have to address how to turn the transfer operator of a
map in ŪNP into the sum of operators of the form (19), with regard to the
two-to-one nature of the transformation. We will then need to examine how
distortion bounds translate quantitatively under this transformation. Once
we have done these, the bounds follow easily.

Theorem 4. From the definition of transfer operators (1) and the orthogo-
nality relation for the Chebyshev basis, we obtain the following formula for
Chebyshev basis matrix elements of transfer operators of maps in ŪNP :

Ljk =
tj
π

∑
ι∈I

∫ 1

−1

σι√
1− x2

v′ι(x)Tk(vι(x)))Tj(x) dx,

where σι = sgn v′ι, tj = 2 − δj0, and the sum is taken over the branches
of the map. Under the transformation x = cos θ and using that Tk(x) =
cos(k cos−1 x), we find that Ljk is related to a Fourier basis matrix entry for
a weighted transfer operator:

(24) Ljk =
tj
π

∑
ι∈I

σι

∫ π

0
v′ι(cos θ) cos(k cos−1 vι(cos θ))) cos jθ dx.

Based on this, we set hι = v′ι ◦ cos for each ι ∈ I. These functions hι are
2π-periodic.

Defining νι+ := cos−1 ◦vι ◦ cos and νι− = 2π − νι+, we find

Ljk =
tj
π

∑
ι∈I

σι

∫ π

0
hι(θ) cos(kνι+(θ)) cos jθ dx

=
tj
4π

∑
ι∈I

σι

∫ π

0
hι(θ)

∑
±

(
ei(kνι±(θ)−jθ) + ei(kνι±(θ)+jθ)

)
dθ.
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Continuing νι± differentiably to the interval [0, 2π] and using that the in-
tegrands are symmetric about π, we can finally rewrite the transfer operator
in the form

(25) Ljk =
tj
8π

∑
ι∈I,±

σι

∫ 2π

0
hι(θ)

(
ei(kνι±(θ)−jθ) + ei(kνι±(θ)+jθ)

)
dθ.

If neither or both of vι(−1) and vι(1) are a singular point of the cos−1

transformation (i.e. −1 or 1), then the νι± are differentiably defined on the
circle R/2πZ. If one of these values is, then νι+ will continue across the criti-
cal points on either side to νι− and so their concatenation νι is a differentiable
map on R/4πZ. Thus, if we define the sets Ic = {ι ∈ I : |vι({±1}) ∩ {±1}| = 1}
and I ′ = (I\Ic × {+,−}) ∪ Ic, and set βι′ = 1 + 1Ic(ι

′), we have

(26) Ljk =
tj
8π

∑
ι∈I′

σι

∫ 2π

0

βι′−1∑
b=0

hι′(θ + 2πb)eikνι′ (θ+2πb)
(
e−ijθ + eijθ

)
dθ.

Clearly, the summands are two-element sums of Fourier coefficient matrix
elements of operators of the form 19. The following lemma, whose proof is
for ease of exposition in Appendix C, shows that that the relevant bounds
on νι′ and hι hold uniformly for all ι:

Lemma 2. Suppose f ∈ ŪNP with partition spacing constant Ξ and I ′ is
defined as above. Then

(a) If the vι satisfy (DDr) with the same distortion constants Cn, n ≤ r,
then for n ≤ r there exist Υn, Hn < ∞ depending only on Cm,m ≤ n
and Ξ such that

sup
θ∈[0,2π],ι′∈I′

ν
(n+1)
ι′ (θ) ≤ Υn

and

sup
θ∈[0,2π],ι′∈I′

∣∣∣∣∣h
(n)
ι′ (θ)

hι′(θ)

∣∣∣∣∣ ≤ Hn <∞.

(b) If the vι obey (ADδ) with the same distortion constant C1,δ, then there
exists ζ ∈ (0, δ], Υ1,ζ , H1,ζ <∞ depending only on ζ, C1,δ and partition
spacing constant Ξ such that

sup

θ∈Λ
βι′
ζ ,ι′∈I′

ν ′′ι′(θ) ≤ Υ1,ζ

and

sup

θ∈Λ
βι′
ζ ,ι′∈I′,±

∣∣∣∣h′ι′(θ)hι′(θ)

∣∣∣∣ ≤ H1,ζ <∞.

Setting µ̃ = [−λ̌−1, λ̌−1] and p̃ = [−p, p], Lemma 2 means we can apply
Lemma 1 to each summand in (26). Up to a constant factorG to be discussed
later we have that if f satisfies (DDr) then there exist Wr,n such that for
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j > pk ≥ 0,

|Ljk| ≤ 2
tj
8π
G

r∑
n=0

Wr,nk
n

(j − λ̌−1k)n+r
.

Similarly, if f satisfies (ADδ) there exists ζ ′ ∈ (0, ζ] such that for j > pk ≥ 0,

|Ljk| ≤ 2
tj
8π
Geζ

′(H1,ζ−(j−pk))

which gives the decay rates stated in Theorem 4 by the same means as in
the proof of Theorem 3.

However, we need to check that the constant factor

G =
∑
ι′∈I′

∫ 2βι′π

0
|v′ι(cos θ)|dθ

is in fact finite.
We convert back to a sum over I by collapsing the sum over ± for ι ∈ I\Ic,

obtaining

G = 2
∑
ι∈I

∫ 2π

0
|v′ι(cos θ)|dθ.

We then make the two-to-one change of variable x = cos θ to find that

G = 4
∑
ι∈I

∫ 1

−1
|v′ι(x)| 1√

1− x2
dx

≤ 4
∑
ι∈I

∫ 1

−1

(1 + 2C1)|Oι|
2
√

1− x2
dx = 4π(1 + 2C1) <∞,

where the first inequality is a result of Lemma 5(b).
This concludes the proof of Theorem 4. � �

Remark 5. Elements of Fourier and Chebyshev transfer operator matrices
are uniformly bounded, with

|Ljk| ≤ 1

for maps in ŪP and
|Ljk| ≤ (2− δj0)(2 + 4C1)

for maps in ŪNP .
This follows by applying Lemma 1(a) in the proofs of Theorems 3-4.

Remark 6. The uniform C-expansion condition (CE) is the natural expan-
sion condition for any choice of spectral basis on an interval. Our reasoning
is as follows. If one wishes to use oscillatory integral techniques on these
basis functions as in Lemma 1, it is best for the wavelength of the basis func-
tions to be approximately spatially constant. However, wavelengths of suffi-
ciently high-order spectral basis functions on intervals will always be much
smaller towards the endpoints. Potential theory [21] tells us that the optimal
transformation to even out high-order basis functions across the interval is
always the cosine transformation.
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We now turn to proving the main theorem, Theorem 2, and its corollar-
ies. Our idea is to perturb L such that the associated coefficient matrix is
block-upper-triangular (in the Fourier case, with the ordering of basis ele-
ments e0, e1, e−1, e2, . . .). This isolates the top block EN → EN , which then
approximates the corresponding EN × EN block of the full, unperturbed
transfer operator, yielding convergence on domain EN .

We summarise this using the following lemma, where we do not require
our Banach space E to be BV .

Lemma 3. Let E be a Banach space such that EN := (id−PN )LPN is an
endomorphism on E.

Suppose L has a spectral gap on E. Then

(27) ‖LN − L|EN ‖E = ‖EN‖E
and

(28) ‖SN − S|EN ‖E ≤
‖S‖E‖EN‖E

1− ‖S‖E‖EN‖E
.

Proof. The first equality (27) arises simply because LN−L|EN = (id−PN )LN |EN =
EN .

Let

L̃N := L − EN = LN + L(id−PN ).

Recalling that we defined S to be the Lebesgue integral functional and u
an element of EN with S u = 1, let us also define S̃N = (id−L̃N + uS )−1.

If ‖EN‖ is small enough, this is well-defined, since S̃N = (id +SEN )−1S and
thus

(29) ‖S̃N − S‖ ≤
‖S‖‖EN‖

1− ‖S‖‖EN‖
.

For φ ∈ EN , we have that

S̃−1
N φ = φ− L̃Nφ+ uS φ = φ− LNφ+ uS φ ∈ EN ,

and thus S̃−1
N |EN is an endomorphism on EN , is equal to S−1

N . Consequently,

SN |EN = S̃N |EN , which combined with (29) yields as desired (28). � �

The following lemma is then required to connect ‖EN‖BV to spectral
matrix coefficients.

Lemma 4. Suppose F : BV (Λ)→ BV (Λ) is an operator for Λ either [0, 2π)
or [−1, 1]. Let the matrix D = (kδjk)j,k∈Z and Ď = (kδ(j−1)k)j,k∈N.

If F has Fourier coefficient matrix F , then

(30) ‖F‖BV ≤ 2π(‖DF‖`2 + ‖F‖`2) .

Similarly, if F has Chebyshev coefficient matrix F , then

(31) ‖F‖BV ≤ 2π(
∥∥ČĎF Č−1‖`2 + ‖ČF Č−1‖`2

)
,

where Č = (t
−1/2
k δjk)j,k∈N.
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Proof. Consider first the Fourier case. Then since 1√
2π
‖ · ‖L2 ≤ ‖ · ‖BV ≤√

2π‖ · ‖H1 ,

(32) ‖F‖BV ≤ 2π‖F‖L2→H1 = 2π (‖DF‖L2 + ‖F‖L2) .

By the Plancherel equality, ‖DF‖L2 = ‖DF‖`2 and ‖F‖L2 = ‖F‖`2 . This
gives the required bound in (30).

Consider instead the Chebyshev case. Define the Jacobi weight function
j(x) =

√
1− x2, and the Sobolev spaces Ȟk ⊂ L2([−1, 1], 1/j), k ≥ 0 with

norm

(33) ‖φ‖Ȟk =
k∑

n=0

∫ 1

−1
j2n−1|φ(n)|2dx.

Note that Ȟ0 = L2([−1, 1], 1/j).
If G is the set of even functions on R/2πZ, simple trigonometric manip-

ulations show that the operator C : φ 7→ 1
2φ ◦ cos is an isometry from Ȟk to

G ∩Hk([0, 2π)) and similarly from BV ([−1, 1]) to G ∩BV ([0, 2π)). Thus,

‖F‖BV ([−1,1]) = ‖CFC−1‖G∩BV ([0,2π))

≤ 2π
(
‖DCFC−1‖G∩L2 + ‖CFC−1‖G∩L2

)
,

where the inequality comes from (32). We can then convert back to Ȟ0 to
get the inequality

‖F‖BV ([−1,1]) ≤ 2π
(
‖C−1DCF‖Ȟ0 + ‖F‖Ȟ0

)
.

We can convert these operator norms into matrix norms as follows. The
Chebyshev polynomial basis is an orthogonal basis for Ȟ0 with ‖Tk‖Ȟ0 =√
π/tk and furthermore the functions

C−1DCTk = k sin(k cos−1 x)

are orthogonal in Ȟ0 with norms k
√
π/tk respectively. The resulting Plancherel

equality results in (31). � �

We now have the requisite results to tie together to prove Theorem 2.

Theorem 2. Maps in UP have a spectral gap in BV as they are uniformly
expanding with bounded distortion. Since maps in UNP have a forward
iterate that is uniformly expanding with bounded distortion by Theorem 6
in Appendix A, they also have a spectral gap in BV .

Suppose EN is the Fourier coefficient matrix of EN and the expansion
coefficient of the associated map f is λ > 1. Then given p ∈ (λ, 1), there
exists an appropriate spectral decay function K such that when |j| ≥ |k|,

|Ljk| ≤ K(|j| − p|k|).
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Now suppose f satisfies (DDr) for some r ≥ 2. Then K(M) = CM−r for
some C > 0, and so

‖EN‖2`2 ≤
N∑

k=−N

∞∑
j=N+1

(
|Ljk|2 + |L−jk|2

)
≤

N∑
k=−N

∞∑
j=N+1

2C2(j − p|k|)−2r

≤ 2C2

2r − 1

N∑
k=−N

(N − p|k|)1−2r,

by converting to an integral. We can then take the supremum of the sum-
mands to obtain

N∑
k=−N

(N − p|k|)1−2r ≤ (2N + 1)(N − pN)1−2r ≤ 3

(1− p)2r−1
N2−2r

and thus

‖EN‖2`2 ≤
6

(2r − 1)(1− p)2r−1
N2K(N)2.

Similarly,

‖DEN‖2`2 ≤
6

(2r − 2)(1− p)2r−2
N3K(N)2,

where D is as in Lemma 4.
Hence as a result of Lemma 4, there exists a function K ′ ∈ κ(DDr) such

that ‖EN‖ ≤ N
√
NK ′(N).

Suppose f instead satisfies (ADδ). Then for some ζ ∈ (0, δ] there exists

p > 1 such that for all |j| ≥ |k|, Ljk ≤ Ce−ζ(|j|−p|k|). Consequently,

‖EN‖2`2 ≤
N∑

k=−N

∞∑
j=N+1

2e−2ζ(j−p|k|) ≤ 4N

ζ2
e−2ζ(1−p)N

with a comparable result for DEN . Thus, there exists a function K ′ ∈
κ(ADδ) such that

‖EN‖ ≤ NK ′(N) ≤ N
√
NK ′(N).

Similarly, we get the same results up to constants in the Chebyshev case:
the C matrices are unproblematic as ‖C‖`2 = 1 and ‖C−1‖`2 = 2.

We therefore have by Lemma 3 that if f satisfies some distortion condition
(D) then there exists K ′ ∈ κ(D) such that for any N and φ in LN ,

‖LNφ− Lφ‖BV ≤ N
√
NK ′(N)‖φ‖BV

and if N is sufficiently large,

‖SNφ− Sφ‖BV ≤
‖S‖BVN

√
NK ′(N)

1− ‖S‖BVN
√
NK ′(N)

≤ 2N
√
N‖S‖BVK ′(N)‖φ‖BV ,



30 SPECTRAL GALERKIN METHODS FOR TRANSFER OPERATORS

which is what was required for Theorem 2. � �

Corollary 1 is a direct result of this convergence and Theorem 1:

Corollary 1. We know from Theorem 1 that ρ = Su. We have also defined
ρN = SNu, recalling that u lies in EN . As a result, by Theorem 2,

‖ρN − ρ‖BV = ‖SNu− Su‖BV ≤ N
√
NK̄(N)‖u‖BV ,

as required. � �

Note that here, unlike in Theorem 2, we actually have that estimates
converge in norm to the true values.

Corollary 2 also follows directly from Theorems 1 and 2.

Corollary 2. We know from Theorem 1 that on V , the space of zero integral
functions, the solution operator S is identical to

∑∞
n=0 Ln. We then need

only apply the second part of Theorem 2 to get the required inequality. �
�

Remark 7. When a map satisfies (ADδ), one might be interested in the
best rate of decay one can get for ‖EN‖BV , which controls the convergence
of estimates. In the non-periodic case one can show that

(34) lim
N→∞

1

N
log ‖EN‖BV = sup

ι∈I,x∈[0,2π]
|=νι(x+ iζ)| − ζ.

The value of z where the supremum in (34) is maximised will have =ν ′ι(z) =
0; if this value of z varies continuously with ζ, then it will have a maximum
when |<ν ′ι(z)| is 1 or −1. Thus, one expects the right-hand side of (34) to
be maximised for

(35) ζ = min
{

inf
{
|=z| | z ∈ (ν ′ι)

−1({±1}), ι ∈ I
}
, δ
}
.

The result is the same in the periodic case but with vι substituted for νι.)
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Appendix A. The relationship between uniform expansion and
uniform C-expansion

In this paper we have stipulated that maps on non-periodic domains sat-
isfy a so-called uniform C-expansion condition rather than the usual uniform
expansion condition. Neither of these conditions imply the other: in fact it
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is not hard to construct non-pathological examples of uniformly-expanding
maps which are not uniformly C-expanding (see Figure 6).

−1.0 −0.5 0.0 0.5 1.0

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

f
(x
)

Figure 6. In black, an example of a map f ∈ UuNP (λ =

0.98−1) which is not uniformly C-expanding (λ̌ ≈ 0.763).
Non-C-expanding parts of f marked in mid grey. In light
grey, lines of unit C-expansion (i.e. curves ψ(x) for which
(cos−1 ◦ψ ◦ cos)′ = ±1).

However in practice, maps in UuNP are generally also in UNP . For example,
all piecewise linear maps in UuNP lie in UNP . (In particular, if f is the k-

tupling map, the uniform C-expansion parameter for f is λ̌ =
√
k.) A map

in UuNP typically fails to be in UNP if its graph “aims” towards the walls
of the domain. To preserve the Markov structure, such a heading must be
facilitated by a kink in the map. This is illustrated in Figure 6.

However, if we now consider only maps that are Markov with bounded
distortion, we find close connections between C-expansion and classical ex-
pansion. In fact, a positive lower bound on one implies a positive lower
bound on the other, which may be seen by an adaptation of the proof of
Theorem 6 below.

Importantly, uniformly C-expanding maps eventually become uniformly
expanding under iteration and vice versa, according to the following theo-
rem.

Theorem 6. Suppose f ∈ UuNP (resp. f ∈ UNP ). Then there exists n∗ ∈ N
such that fn ∈ UNP (resp. UuNP ) for all n ≥ n∗. Each fn satisfies the same
distortion conditions as f , with possibly different constants.

Remark 8. Since iterates of a map have an exponentially growing number
of branches, for computational purposes it may be more effective simply to
compute a conjugacy of a map which is C-expanding.
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It is in fact possible to construct, for a map f ∈ UuNP (resp. UNP ), an

analytic diffeomorphism ηf such that fc = ηf ◦ f ◦ η−1
f ∈ UNP (resp. UuNP ).

Furthermore, if f satisfies (DDr) then so will fc, and if f satisfies (ADδ)
for some δ > 0 then there exists δ′ > 0 for which fc satisfies (ADδ′).

Thus, maps in UuNP and in UNP have the same dynamical properties and
can additionally be converted from one class to the other. We emphasise
that the crucial assumption here is bounded distortion.

We now prove the results stated above, beginning with Theorem 6.

Theorem 6. Suppose f ∈ UuNP with |f ′| > λ and distortion constant C1.
Then fn ∈ UuNP with |(fn)′| > λn and distortion constant bounded by

C1
1−λ−n−1

1−λ−1 [11]. Let us use the notation fn = g with branches Pι, ι ∈ In.
Suppose x ∈ Pι for some ι ∈ In. Then

1− |x|
| sgn(xg′(x))− g(x)| ≥

vιx(sgn(xg′(x)))− x
|g(vιx(sgn(xg′(x))))− g(x)| ,

and by the intermediate value theorem there exists w ∈ Pι such that

vιx(sgn(xg′(x)))− x
|g(vιx(sgn(xg′(x))))− g(x)| =

1

|g′(w)| .

Using Lemma 5(a) we find that

1

|g′(w)| >
e−2C1

|g′(x)| ,

and so for all x ∈ ∪ι∈IOι,√
1− x2

1− (g(x))2
|g′(x)| ≥

√
1 + |x|

| sgn(xg′(x)) + g(x)|e
−2C1 |g′(x)| ≥

√
1

2
e−2C1λn > 1

for n sufficiently large.
The map fn is full-branch Markov with bounded distortion, by the above

satisfies (CE), and by Lemma 6 satisfies (P). Consequently, fn ∈ UNP .
Now, suppose f ∈ UNP and let n ∈ N+. For the remainder of this proof,
we will use subscript notation for forward iterates: xn = fn(x). We will
additionally call two points x, y ∈ Λ n-companions if there exists a sequence
(ιj)j=1,...,n such that xj−1, yj−1 ∈ Oιj for j ≤ n.

Given x ∈ Λ, choose y, z such that x, y and z are n-companions, yn = −1
and zn = 1. Then by the mean value theorem, there exists w between y and
z such that

(36) |(fn)′(w)| = |zn − yn||z − y| ≥
2

π
λ̌n.

Now, since w lies between y and z, it is an n-companion of x, y and z.
We will therefore relate |(fn)′(w)| to |(fn)′(x)| using bounded distortion.
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We expand their quotient out using the chain rule and rewrite:

|(fn)′(x)|
|(fn)′(w)| =

n∏
j=1

|f ′(xj−1)|
|f ′(wj−1)|

=

n∏
j=1

|v′ιj (xj)−1|
|v′ιj (wj)−1|

= e
∑n
j=1

(
log |v′ιj (wj)|−log |v′ιj (xj)|

)

≥ e−
∑n
j=1

∣∣∣log |v′ιj (wj)|−log |v′ιj (xj)|
∣∣∣
.(37)

We then bound the summands using (DD1) and the fact that v′′ι /v
′
ι =

(log |v′ι|)′: ∣∣∣log |v′ιj (wj)| − log |v′ιj (xj)|
∣∣∣ ≤ C1|wj − xj | ≤ C1λ̌

j−nπ.

The sum in (37) can thus be collapsed to give

|(fn)′(x)|
|(fn)′(w)| ≥ e

−
∑n
j=1 C1λ̌j−nπ > e−C1π(1−λ̌)−1

.

Combining this with (36) gives us that

|(fn)′(x)| ≥ e−C1π(1−λ̌)−1 2

π
λ̌n,

which implies that fn is uniformly expanding for sufficiently large n. Since
as before fn satisfies all the non-expansion conditions to be in UuNP , we have
that fn ∈ UuNP . � �

Appendix B. Results on conditions (DD1) and (P)

In this appendix, we prove some properties possessed by maps in UNP
used through the rest of the paper. We first give some “non-local” proper-
ties of the bounded distortion condition (DD1), and then prove that (P) is
preserved under iteration.

We first prove a lemma relating bounded distortion constants to bounds
on derivatives of the map. The properties summarised in Lemma 5 are
mostly standard, but we improve the upper bound in part (b) from the
exponentially large e2C1 to a computationally more useful 1 + 2C1.

Lemma 5. Suppose f : [−1, 1]→ [−1, 1] is full-branch Markov with bounded
distortion. Suppose the distortion constant of f is C1. Then for all ι ∈ I:

(a) For all x,w ∈ [−1, 1],

e−2C1 ≤ |v
′
ι(x)|
|v′ι(w)| ≤ e

2C1 ;

(b) For all x ∈ [−1, 1],

e−2C1
|Oι|

2
≤ |v′ι(x)| ≤ (1 + 2C1)

|Oι|
2
.
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Proof of Lemma 5. Part (a) is a standard result [11, 16].
To prove (b), we have that as a result of the intermediate value theorem

there exists some w ∈ [−1, 1] such that

v′ι(w) =
vι(1)− vι(−1)

2
=
|Oι|

2
.

By part (a), e−2C1 ≤ |v′ι(x)|
|v′ι(w)| . Additionally, the fundamental theorem of

calculus gives that

v′ι(x) = v′ι(w) +

∫ x

w
v′′ι (ξ)dξ,

and consequently

|v′ι(x)| ≤ |v′ι(w)|+
∫ w

x
C1|v′ι(ξ)||dξ|

≤ |Oι|
2

+ C1

∫ 1

−1
|v′ι(ξ)|dξ =

(
1

2
+ C1

)
|Oι|,

as required.
�

Remark 9. Similarly, suppose that a map f ∈ ŪNP obeys analytic distortion
condition (ADδ) with constant C1,δ. Then for all x,w ∈ Λ̌δ,

e−2C1,δ cosh δ ≤ |v
′
ι(x)|
|v′ι(w)| ≤ e

2C1,δ cosh δ.

We now prove that the partition spacing condition (P) is preserved under
composition. Consequently, UNP and ŪNP are closed under composition.

Lemma 6. Suppose f and g are Markov maps on [−1, 1] satisfying (P),

and that in addition f has bounded distortion with parameter C
(f)
1 and g

has uniform expansion parameter λ(g) > 0.
Then g ◦ f satisfies (P).

Proof. Let Oφγ = v
(f)
φ

(
v

(g)
γ (Λ)

)
be a branch set of g ◦ f . Let p ∈ ∂Λ, i.e.

p = ±1.

Since Oφγ = v
(f)
φ

(
O(g)
γ

)
, by Lemma 5(c) we have

|Oφγ |∣∣∣O(g)
γ

∣∣∣ ≤
(

1 + 2C
(f)
1

) ∣∣∣O(f)
φ

∣∣∣
2

,

and thus a preliminary bound on our ratio of interest:

(38)
|Oφγ |

d(Oφγ , p)
≤

(
1 + 2C

(f)
1

)
1
2

∣∣∣O(g)
γ

∣∣∣ ∣∣∣O(f)
φ

∣∣∣
d(Oφγ , p)

.

We are interested in intervals for which p /∈ Oφγ . If p ∈ Oφγ , then we need

p ∈ O(f)
φ and f̂φ(p) =: τ ∈ O(g)

γ . Note that since p ∈ ∂O(f)
φ , then τ ∈ ∂Λ.
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Therefore, intervals Oφγ which do not contain p either have p /∈ O(f)
φ or

τ /∈ O(f)
γ .

We split into cases accordingly. In the first case where p /∈ O(f)
φ , we have

that since O(g)
γ = v

(g)
γ ([−1, 1]), its length must be less than 2/λ(g). Since

Oφγ ⊆ O(f)
φ , we must have d (Oφγ , p) ≥ d

(
O(f)
φ , p

)
. Therefore from (38),

|Oφγ |
d(Oφγ , p)

≤ (1 + 2C
(f)
1 )

1

λ(g)
Ξ(f),

where we used that |O(g)
γ | < |Λ|/λ(g) from the expansion assumption.

For the second case, let q ∈ ∂Λ be such that v
(f)
φ (q) lies in between Oφγ

and p and let r ∈ ∂O(f)
γ such that v

(f)
φ (r) is the nearest point in Oφγ to p

(and thus, q). Then d(Oφγ , p) is the length of the interval [v
(f)
φ (r), p], which

is bigger than the length of the interval [v
(f)
φ (r), v

(f)
φ (q)] = v

(f)
φ ([r, q]). Using

Lemma 5 the length of this last interval can be bounded:∣∣∣v(f)
φ ([r, q])

∣∣∣
|[r, q]| =

∫ q
r

∣∣∣(v(f)
φ )′(x)

∣∣∣ |dx|
|[r, q]| ≥ e−2C

(f)
1

1

2

∣∣∣O(f)
φ

∣∣∣ .
Furthermore, the distance between r and q is precisely d(O(g)

γ , q).
Combining these results with (38), we find that

|Oφγ |
d(Oφγ , p)

≤
(

1 + 2C
(f)
1

)
e2C

(f)
1

O(g)
γ

d(O(g), q)
≤
(

1 + 2C
(f)
1

)
e2C

(f)
1 Ξ(g).

Combining the two cases, then, we find that

Ξ(g◦f) ≤
(

1 + 2C
(f)
1

)
max

{
e2C

(f)
1 Ξ(g),

1

λ(g)
Ξ(f)

}
,

as required. �

Appendix C. Proof of Lemma 2

In this appendix we will prove Lemma 2, which states that standard
properties of f (e.g. differentiability of the distortion) imply the properties
of cos−1 ◦f ◦ cos required to apply Lemma 1 in the proof of Theorem 2.

We remark that while the partition position condition (P) is crucial for
the proof in general, it is not necessary if one restricts to maps that only
satisfy (DD1).

We also emphasise that this lemma gives very loose bounds for the Υn and
Υ1,δ, and that in practice one is best served by calculating these constants
directly from the νι.

We will first state and prove two lemmas upon which Lemma 2 relies, and
then prove the latter.
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Lemma 7. Suppose the map f ∈ ŪNP is piecewise Cn+1, choose σ ∈ ∂Λ =
{±1} and let τ = vι(σ). Define the gradient of the chord

Ŝι,σ(x) =
τ − vι(x)

σ − x .

Then

Ŝ(n)
ι,σ (w) =

1

n+ 1
v(n+1)(w)

for some w directly between σ and x.

Proof. We can show by induction that for all n ≥ 0

Ŝ(n)
ι,σ (x) = n!

τ −∑n
m=0

1
m!v

(m)
ι (x)(σ − x)m

(σ − x)n+1
.

Since vι(σ) = τ , the lemma follows by Taylor’s theorem. � �

Lemma 8. Suppose f ∈ ŪNP , ι ∈ I and σ ∈ ∂Λ = {±1} such that vι(σ) /∈
∂Λ. Let τι,σ = σ sgn v′ι(0) and

Tι,σ(x) = 1− vι(x)/τι,σ.

Then for x ∈ [−1, 1], Tι,σ(x) ≥ Ξ−1|Oι|. If f satisfies analytic distortion

condition (ADδ) then there exists ζ ∈ (0, δ] and Kζ > 0 such that for z ∈ Λ̌ζ
|Tι,σ(z)| ≥ Kζ |Oι|.
Proof. Recalling that τ2

ι,σ = 1 we can write

Tι,σ(x) = τι,σ(τι,σ − vι(σ)) + τι,σ(vι(σ)− vι(x)).

Since τι,σ−vι(σ) has the same sign as τι,σ, the first term can be written as a
positive quantity |τι,σ− vι(σ)| which is equal to d(τι,σ,Oι). By the partition
spacing condition (P), we have d(τι,σ,Oι) ≥ Ξ−1|Oι|.

Furthermore, one can apply Taylor’s theorem to the second term to get
that τι,σ(vι(σ)−vι(x)) = τι,σ(σ−x)v′ι(w) for some w between x and σ. Since
v′ι keeps its sign on [−1, 1] and the sign of σ − x is simply the sign of σ, the
definition of τι,σ means that the second term is positive on [−1, 1]. Thus,
for x ∈ [−1, 1], Tι,σ(x) ≥ Ξ−1|Oι|.

On the analytic domain Λ̌ζ the situation is more complicated. We write
that

(39) <Tι,σ(x) = d(τι,σ,Oι)− τι,σ< (vι(x)− vι(<x))− τι,σ (vι(<x)− vι(σ)) ,

and bound terms from below.
Set Cζ = e2C1,δ cosh ζ . We have that for any point x in Λ̌ζ , |v′(x)| ≤ Cζ

1
2 |Oι|

as a result of Remark 9. We will use this fact in the following discussion.
The Bernstein ellipse Λ̌ζ has major axis cosh ζ · [−1, 1] and minor axis

i sinh ζ · [−1, 1]. As a consequence every point w in Λ̌ζ has <w ≤ cosh ζ and
|=w| ≤ sinh ζ.

We have by Taylor’s theorem that

τι,σ< (vι(x)− vι(<x)) = τι,σ<
(
v′ι(<x)i=x− v′′ι (w)

2
=x2

)
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for w between x and <x (i.e. in Λ̌ζ). Thus,

|τι,σ< (vι(x)− vι(<x)) | ≤ C1,δCζ |Oι|
4

sinh2 ζ.

Furthermore,

τι,σ (vι(<x)− vι(σ)) = σ−1 sgn v′ι(0)(<x− σ)v′ι(w)

for w between <x and σ, i.e. in Λ̌ζ ∩ R. Since v′ι 6= 0 on Λ̌ζ because of the

bounded distortion condition (ADδ), and v′ι must be real on Λ̌ζ∩R as it is real
on [−1, 1] and analytic on the whole interval, we have sgn v′ι(w) = sgn v′ι(0)
and so

τι,σ (vι(<x)− vι(σ)) = (<x/σ − 1)|v′ι(w)|
≤ (cosh ζ − 1)|v′ι(w)|

≤ (cosh ζ − 1)Cζ
|Oι|

2
.

As a result we have from (39)

|Tι,σ(x)| ≥ <Tι,σ(x) ≥
(

Ξ−1 − Cζ
4

(
C1,δ sinh2 ζ + 2 cosh ζ − 2

))
|Oι|.

When ζ is small enough, the term multiplying |Oι| is positive. � �

With these lemmas in hand, we can now prove Lemma 2.

Lemma 2. We begin with the first part of part (a), bounding derivatives of
the νι. We will do this by first proving a formula for the derivatives of νι
and then bounding terms in this formula to get overall bounds.

Let πn := n mod 2. We claim that

(40) ν(n+1)
ι (cos−1 x) =

∑
q+r+s≤n

aq,r,s,n(x)Y q,n
ι,1 (x)Y r,n

ι,−1(x)v(s+1)(x),

where aq,r,s,n are polynomials in x with coefficients independent of f , and

(41) Y m,n
ι,σ (x) =

(1− xσ−1)
πn
2

(
S
−1/2
ι,σ

)(m)
, vι(σ) ∈ {−1, 1},

(1− xσ−1)
πn
2

(
T
−1/2
ι,σ

)(m)
, vι(σ) /∈ {−1, 1}.

We prove this claim by induction. Suppose without loss of generality that
sgn v′ι = 1.

When n = 0, we have that

ν ′ι(cos−1 x) =

√
1− x

1− vι(x)

√
1 + x

1 + vι(x)
v′ι(x).

From (41), we find that

Y 0,0
ι,σ (x) =

√
1− xσ−1

1− vι(x)σ−1
,
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and thus (40) follows for n = 0.
Suppose, then, that (40) is true for some n. Then

ν(n+2)
ι (cos−1(x)) =

√
1− x2(ν(n+1)

ι ◦ cos−1)′(x).

All we need to show is that
√

1− xσ−1Y m,n
ι,σ (x) and

√
1− xσ−1(Y m,n

ι,σ )′(x)

can be written as a product of Y m,n+1
ι,σ (x) (and for the derivative possibly

also Y m+1,n+1
ι,σ (x)), and polynomials in x. In the case where vι(σ) ∈ {−1, 1},

we have √
1− xσ−1Y m,n

ι,σ (x) = (1− xσ−1)
πn+1

2

(
S−1/2
ι,σ

)(m)

= (1− xσ−1)πnY m,n+1
ι,σ (x)

and√
1− xσ−1(Y m,n

ι,σ )′(x) = (1− xσ−1)
πn+1

2

(
S−1/2
ι,σ

)(m+1)

− πnσ−1(1− xσ−1)
πn−1

2

(
S−1/2
ι,σ

)(m+1)

= (1− xσ−1)πnY m+1,n+1
ι,σ (x)

− πnσ−1(1− xσ−1)πn−1Y m,n+1
ι,σ (x)

= (1− xσ−1)πnY m+1,n+1
ι,σ (x)− πnσ−1Y m,n+1

ι,σ (x),

where in the last line we removed the (1− xσ−1)πn−1 element from the last
term by using that the last term is zero unless πn = 1. The relation when
vι(σ) /∈ {−1, 1} is clearly analogous, from which the claim falls.

We now attempt to bound the expression in (40). To bound the Y m,n
ι,σ , we

need to bound derivatives of S
−1/2
ι,σ and T

−1/2
ι,σ . One may show by induction

that for n ≥ 1 there exist multivariate polynomials qn such that for any
function U ,

(42) (U−1/2)(n) = U−1/2qn

(
U ′

U
, . . . ,

U (n)

U

)
.

By Lemma 7, we have that when vι(σ) ∈ {−1, 1}

|S(n)
ι,σ (x)| = 1

n+ 1
|v(n+1)(w)|

for some w ∈ [−1, 1]. Using distortion bound (DDn) and Lemma 5 we can
bound this again to get that

|S(n)
ι,σ (x)| ≤ Cne

2C1

n+ 1
|v′(x)|.

We also have that |Sι,σ(x)| = |v′(w)| > e−2C1 |v′(x)| for some w ∈ [−1, 1].
Substituting these bounds into (42) we find that∣∣∣∣(S−1/2

ι,σ

)(n)
∣∣∣∣ ≤ eC1 |v′|−1/2|qn|

(
C1e

4C1

2
, . . . ,

Cne
4C1

n+ 1

)
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when vι(σ) ∈ {−1, 1}.
Similarly, we have that |T (n)

ι,σ (x)| = |v(n)(x)| ≤ Cn|v′(x)| and, by Lemma
8, when vι(σ) /∈ {−1, 1} that |Tι,σ(x)| ≥ Ξ−1|Oι| ≥ 2Ξ−1e−2C1 |v′(x)|. These
bounds can be substituted into (42) similarly to give∣∣∣∣(T−1/2

ι,σ

)(n)
∣∣∣∣ ≤

√
Ξ

2
eC1 |v′|−1/2|qn|

(
C1Ξe2C1

2
, . . . ,

CnΞe2C1

2

)
when vι(σ) /∈ {−1, 1}.

Thus, there exist constants km,n depending on the distortion constants
and partition spacing constant such that for all ι ∈ I and σ ∈ {−1, 1}, we

have |Y m,n
ι,σ (x)| ≤ km,n|v′(x)|−1/2.

Returning to (40), we have that since |v(s+1)(x)| ≤ Cs|v′(x)|,
|ν(n+1)
ι (cos−1 x)| ≤

∑
q+r+s≤n

|aq,r,s,n|(1) kq,nkr,nCs,

for x ∈ [−1, 1], and thus |ν(n+1)
ι (θ)| is bounded by the same constant for

θ ∈ [0, 2πβι′).
The proof of the first part of part (b) is essentially the same as the above

with n = 1. The major difference is that we apply Remark 9 and the second
bound in Lemma 8 instead of Lemma 5 and the first bound, respectively.

We also use that cos−1 Λ̌ζ = Λ
βι′
ζ so bounds on ν(n)(θ) transfer directly to

bounds on ν(n)(cos−1(x)).
The second parts of (a) and (b) are much more straightforward. In both

cases we seek to bound

(43)

∣∣∣∣∣h(n)
ι

hι

∣∣∣∣∣ =

∣∣(v′ι ◦ cos)(n)
∣∣

|v′ι ◦ cos|
on appropriate domains. The nth derivative of v′ι ◦ cos can be written as a

linear combination of v
(m+1)
ι ◦ cos,m ≤ n with coefficients of trignometric

polynomials. Trigonometric polynomials are bounded on [0, 2πβι′ ] and Λ
βι′
ζ ;

on these respective domains, the |v(m+1)
ι ◦ cos | are bounded by Cm|v′ι ◦ cos |

and by C1,δ|v′ι ◦ cos | for m = 1 respectively. Thus, we find that (43) are
bounded by constants depending on Cm, m ≤ n − 1, and in the analytic
case on ζ (which parameterised Λ̌ζ) and C1,ζ . � �

Appendix D. Explicit bounds on the norm of the solution
operator in BV

In [16], explicit a priori bounds on decay of correlations were stated in
the Lipschitz norm. Specifically, if a map on [0, 1] has expansion coefficient
λ and (DD1) distortion constant C1, then with V the space of zero-integral
functions on [0, 1], the following bound holds:

R =
2C1

1− λ−1
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D = 4eR(1 +R),

ξ =
1

2
e−R(1− λ−1),

‖Ln|V ‖Lip ≤ De−ξn.(44)

In this appendix we sketch how these explicit bounds work through to
bound ‖S‖BV .

Let Lip([0, 1]) be the space of Lipschitz functions on the interval [0, 1]
with the usual norm.

Suppose that ‖Ln|V ‖Lip ≤ Kn < 1/2. Suppose that g ∈ BV ([0, 1]) ∩ V
with ‖g‖BV = 1. Let ĝn be the piecewise linear interpolant to g at the points
0, 1

n ,
2
n , . . . , 1. It can be seen that Lip ĝn ≤ n and ‖ĝn − g‖1 ≤ 1

2n .
Consequently,

‖Lng‖1 ≤ ‖Lnĝn‖1 + ‖Ln(g − ĝn)‖1

≤ 1

5
‖Lnĝn‖Lip + ‖g − ĝn‖1

≤ Kn

5
(Lip ĝn + ‖ĝn‖∞) + ‖g − ĝn‖1

≤ Kn

5
(n + 1) +

1

2n
,

where we used that ‖h‖Lip ≥ 5‖h‖1 and ‖h‖BV ≥ ‖h‖∞ for h ∈ V .

Setting n = dK−1/2
n e, we have

‖Lng‖1 ≤
√
Kn(7 + 4

√
Kn)

10
≤
√
Kn.

Hence, as a result of the standard BV Lasota-Yorke inequality [9] we find
that

(45) ‖Lm+ng‖BV ≤
5

4
|Lm+ng|BV ≤

5

4
(λ−mC1

√
Kn).

Using that ‖Ln|V ‖Lip ≤ De−ξn from (44), and choosing

n =

⌈
4 + 2 log(max{C1, 1}

√
D))

ξ

⌉

m =

⌈
2

log λ

⌉
,

we have

‖Ln|V ‖ ≤
e−4

min{1, C−2
1 }D−1

=: Kn < 1/2.

Consequently from (45) we have that ‖Lm+n‖BV ≤ 5
2e
−2 ≤ 2

5 .
As a result,

(46)

∥∥∥∥∥
∞∑
k=0

Lk
∥∥∥∥∥
BV

≤
∥∥∥∥∥
∞∑
k=0

L(m+n)k

∥∥∥∥∥
BV

∥∥∥∥∥
m+n−1∑
k=0

Lk
∥∥∥∥∥
BV

≤ 5

3
(m+ n)C ′,
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where C ′ := 1 + 1
3

C1
1−λ−1 ≥ supn∈N ‖Ln‖BV ≤ This bounding property of C ′

is the result of the Lasota-Yorke inequality and the fact that ‖g‖BV ≥ 3‖g‖1
for g ∈ BV ∩ V .

As a result of (18), we finally obtain the a priori bound on the solution
operator

(47) ‖S‖BV ≤ 1 +
5

3
(m+ n)C ′(3 + C ′).
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