
Spectral convergence of diffusion maps: improved error

bounds and an alternative normalisation

Caroline L. Wormell∗ Sebastian Reich†

June 3, 2020

Abstract

Diffusion maps is a manifold learning algorithm widely used for dimensionality reduction.
Using a sample from a distribution, it approximates the eigenvalues and eigenfunctions of
associated Laplace-Beltrami operators. Theoretical bounds on the approximation error are
however generally much weaker than the rates that are seen in practice. This paper uses new
approaches to improve the error bounds in the model case where the distribution is supported
on a hypertorus. For the data sampling (variance) component of the error we make spatially
localised compact embedding estimates on certain Hardy spaces; we study the deterministic
(bias) component as a perturbation of the Laplace-Beltrami operator’s associated PDE, and
apply relevant spectral stability results. Using these approaches, we match long-standing
pointwise error bounds for both the spectral data and the norm convergence of the operator
discretisation.

We also introduce an alternative normalisation for diffusion maps based on Sinkhorn
weights. This normalisation approximates a Langevin diffusion on the sample and yields
a symmetric operator approximation. We prove that it has better convergence compared
with the standard normalisation on flat domains, and present a highly efficient algorithm to
compute the Sinkhorn weights.

1 Introduction

Many problems in data science revolve around the extraction of information about the geom-
etry of some probability distribution given only a sample that may possibly be embedded in
an ambient space of much higher dimension: examples of these problems include clustering and
dimension reduction. The intrinsic geometry of such a distribution may be encoded by various
weighted Laplace-Beltrami operators, from whose spectral data various desiderata can be ex-
tracted: for example, the operator’s eigenfunctions may be used to define intrinsic coordinates
for the support of the distribution (Coifman et al. 2005, Coifman & Lafon 2006), or may be used
in spectral clustering algorithms (Nadler et al. 2006).

Diffusion maps is a widely-used algorithm to recover the relevant eigendata (Coifman et al.
2005, Coifman & Lafon 2006): the idea is to construct a particle discretisation of the evolution
of a weighted Laplace-Beltrami operator L over some short timestep ε. To this end, a kernel
matrix K is first constructed:

K =
(

1
M kε(d(xi, xj))

)
i,j=1,...,M

, (1)

∗School of Mathematics & Statistics, The University of Sydney, ca.wormell@gmail.com
†Department of Mathematics, University of Potsdam

1



where the xi ∼ ρdx are the sample points, kε is a symmetric probability kernel with covariance
matrix εI. The kernel matrix is then normalised to be Markov (i.e. row-stochastic)

P = diag(Ku)−1K diag(u), (2)

for some appropriately chosen weight vector u ∈ RM .
As the sample size M is taken to infinity and the diffusion timestep ε is taken to zero with

an appropriate dependence on M (Lindenbaum et al. 2017), the spectral data of P should
approximate that of the Laplace-Beltrami operator semigroup eεL, enabling reconstruction of
the spectral data of the operator L itself. (Indeed, this problem is often formulated as the graph
Laplacian L = ε−1(P − I) approximating L.) The Markov nature of the normalised matrix P
means that the intrinsic coordinates provided by its leading eigenvectors faithfully reconstruct
the intrinsic geometry of the distribution’s support (Coifman & Lafon 2006).

Standard choices of weights for these operators are of the form ǔ ≡ (K1)−α, for some α ∈
[0, 1]. In this case, the weighted Laplace-Beltrami operators to which the convergence occurs are

Ľαφ := 1
2∆φ+ (1− α)∇ log ρ · ∇φ = 1

2ρ
−(2−2α)∇ · (ρ2−2α∇φ), (3)

where ρ is the density of the distribution with respect to Lebesgue measure. The case α = 0
(i.e. ǔ ≡ 1) is the standard graph Laplacian normalisation; on the other hand, we recover for
α = 1 the unweighted Laplace-Beltrami operator, and for α = 1

2 the generator of the Langevin
diffusion with invariant measure ρ (Coifman & Lafon 2006).

The last twenty years have seen a range of rigorous work establishing and bounding the
convergence of diffusion maps and related methods. Because both a space and time discretisation
occur, the error decomposes into two parts: a “variance” error of finite samples size M with the
timestep ε held fixed, and a “bias” error from the positive timestep ε. For pointwise estimates
on P , the errors associated with the two limits have been shown to be bounded respectively by
O(M−1/2ε−d/4) and O(ε2) (Hein et al. 2005, Singer 2006). There are clear intuitions to these
error rates: the first is a central limit theorem error between K and its infinite data limit, taking
into account that of the M sample points, we expect Meff = O(Mεd/2) to be in the effective
support of the kernel; the second is a standard first-order discretisation error for a diffusion
operator over timestep ε. It is natural to expect that the pointwise error of the discretisation
should transfer to the spectral data: with the short timestep magnifying the errors by a factor
of O(ε−1), this would yield an O(M−2/(8+d)) error for the optimal scaling of ε with M .

However, theoretical estimates for spectral data in the literature have been much weaker than
this. The standard bound on the bias error in the spectral data has been the naive estimate
of O(ε1/2), corresponding to the Lp → Lp operator error (Hein et al. 2005, Shi 2015, Trillos
et al. 2019, Lu 2020). While the decay of the variance error as M → ∞ with ε fixed has been
long known as a result of the theory of Glivenko-Cantelli function classes (von Luxburg et al.
2004, 2008, Belkin & Niyogi 2007), this approach has yielded only weak quantitative bounds of
O(M−1/2ε−d−3) on the variance error (Shi 2015). Due to the dependence of the weights ǔα on
the sample for α 6= 0, this approach has also largely been specialised to the graph Laplacian
normalisation α = 0. More recently optimal transport techniques have been applied to bound
the variance error. These necessarily sacrifice the central limit theorem convergence in M for the
much slower optimal transport rate of O(( logM

M )1/d), but yield an overall error of O(( logM
M )1/2d)

in the eigenvalues for dimensions d ≥ 2 (Trillos et al. 2019, Lu 2020). In Calder & Trillos
(2019) these results were bootstrapped with (weaker) pointwise estimates to obtain a central
limit theorem convergence in M with overall convergence rate of O(( logM

M )1/d+4) on general
manifolds. However, only completely unweighted graph Laplacians were studied, because study
of weighted operators demands recursive application of the central limit theorem from the sample.
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The first goal of our paper is to prove that for diffusion maps normalisations, the pointwise
error bounds hold for the spectral data. This work is independent of Calder & Trillos (2019) and
takes a different, more dynamical approach that defeats the recursivity problem and may in fact
be applied very generally to kernel-based discretisation problems. This is because we fully carry
through the pointwise convergence rates of diffusion maps discretisations to norm convergence
of the discretised operators. For simplicity, we will assume the support of the measure is a flat
torus D = (R/LZ)d and the sample points xi are independent and identically distributed; we will
use the standard Gaussian choice of kernel.

To achieve this goal we will apply new approaches to both the bias and variance components
of the error. To bound the bias error, we will reformulate the problem as one of compact PDE
evolution operators for which the perturbations are bounded from a strong norm to a weak norm,
and apply the relevant spectral approximation theory (Keller & Liverani 1999). Our bounds on
the variance error conservatively extend the pointwise error bound to operator errors in certain
Hardy spaces via compact embedding estimates that, crucially, take advantage of the localisation
of the kernel.

Combining these, we will obtain an spectral error of O(M−1/2ε−1−d/4(logMε−1)d−1/2 + ε):
for optimal scaling ε ∼ M−2/(8+d)+oM (1), this gives a total error of O(M−2/(8+d)+oM (1)). For
larger dimensions d ≥ 3, this is a major improvement over previous results for weighted Lapla-
cians: for example, compared with Trillos et al. (2019) the accuracy is squared for d = 8. It is
also a significant improvement on the unweighted Laplacian results of Calder & Trillos (2019).
Our convergence rate for the variance error of spectral data estimates still remains weaker than
variance errors observed empirically, although we believe the difference is only a small polyno-
mial factor in ε. On the other hand, the O(ε) bias error bound appears optimal (from empirical
results we believe this rate also carries across to curved manifolds). Our only assumptions on
the sample density ρ are that it is bounded away from zero and C3/2+β Hölder for some β > 0
(i.e. a Cβ

′
first derivative for some β > 1/2).

Our theoretical approach facilitates the second goal of the paper: to propose and study a
superior normalisation using Sinkhorn weights for the Langevin dynamics whose generator is

Lφ := Ľ0.5φ = 1
2∆φ+ 1

2∇ log ρ · ∇φ. (4)

So-called Sinkhorn weights u, 1/(Ku) for a general matrix K are defined to be those making
the row-stochastic matrix P = diag(Ku)−1K diag(u) also column-stochastic. This kind of matrix
weighting problem has been studied since Sinkhorn (1964); it has seen recent interest in the
context of computing entropically regularised optimal transport plans (Cuturi 2013, Altschuler
et al. 2017, Feydy et al. 2019). In using Sinkhorn weights as a normalisation for diffusion maps,
we will study the restricted case where the kernel matrix K is symmetric (and so one is computing
a coupling of the sample’s empirical measure ρM with itself). In this restricted case, such weights
solve the (quadratic) problem

diag(u) = diag(Ku)−1. (5)

We will prove that, at least in the cases we consider, the Sinkhorn weights have an improved
rate of convergence, with a bias error in eigendata improving to O(ε2) from O(ε) for standard
weights, while keeping the same M → ∞ error rate. This means that, compared with the
standard weights, a larger timestep ε ∼M−2/(12+d)+o(1) may be chosen with a further improved
overall convergence rate of O(M−4/(12+d)+o(1)), although in practice ε has to be rather small,
and thus M very large, for this convergence rate to take hold. For this convergence to hold it is
only necessary that the density ρ be C2+β Hölder for β > 0.
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Beyond this, the Sinkhorn normalisation has a range of advantageous and interesting prop-
erties for applications of diffusion maps. Uniquely among diffusion maps normalisations, the
normalised matrix P is symmetric: its eigenvectors are therefore orthogonal with respect to the
sample and they exactly perform a nonlinear principal component decomposition of the sample.
Furthermore, the action of P preserves not only constant functions but also total integrals, which
is of use for example in non-parametric forecasting (Berry et al. 2015).

While Sinkhorn weights must be computed iteratively, we also present an accelerated algo-
rithm to calculate the weights that, by harnessing the symmetric nature of the problem, converges
in O(1) matrix-vector multiplications. As a result, the use of Sinkhorn weights has minimal nu-
merical overhead.

This paper is structured as follows. In Section 2 we define the mathematical objects used in
the paper; in Section 3 we state the main theorems with a brief numerical illustration; in Section
4 we describe our accelerated Sinkhorn algorithm. We then turn to studying the convergence
of relevant operators as the timestep ε → 0, focussing on the more interesting case of the
Sinkhorn normalisation. After stating some relevant functional-analytic results in Section 5 and
describing the convergence of Sinkhorn weights as ε → 0 in Section 6, we prove the necessary
operator convergence result for the bias error in Section 7. We then consider the variance error,
i.e. that of finite M : in Section 8 we bound the operator convergence of the kernel matrix K
to a continuum limit in appropriate norms, and in Section 9 we do the same for the normalised
matrix P ; in Section 10 we combine the two operator convergence resultsto prove the convergence
of spectral data for the Sinkhorn weight case. Finally, we outline the corresponding results for
standard weights in Section 11.

2 Notation

We now present some notation that will be used in the main theorems and throughout the paper.

2.1 Operators

We will use as our kernel function the periodic Gaussian kernel kε(x, y) = gε,L(y − x):

gε,L(x) =
∑
j∈Zd

gε(x+ Lj), (6)

where the standard Gaussian kernel is

gε(x) = (2πε)−d/2e−‖x‖
2/2ε. (7)

Note that if, as is typical, the bandwidth
√
ε� L, all but one summand in (6) will be superex-

ponentially small.
We define convolution by the periodic Gaussian kernel (6) as an operator

(Cεφ)(x) =

∫
D
gε,L(y − x)φ(y) dx, (8)

which has the semigroup property CsCt = Cs+t.
In this paper we will interpolate the vectors and matrices introduced in the introduction by

functions defined on the continuous domain D. Our interpolation arises very naturally: the kernel
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matrix K defined in (1) acting on vectors (φ(xi))i=1,...,M extends to the following operator

(KMε φ)(x) :=
1

M

M∑
i=1

gε,L(x− xi)φ(xi) = (CερMφ)(x), (9)

where ρM is the empirical measure of the sample.
For Sinkhorn weights our weight vector u, defined in (5), then extends to the function UMε

given as the unique solution of
UMε (x) (KMε UMε )(x) ≡ 1. (10)

Our normalised matrix then extends to the operator

(PMε φ)(x) = UMε (x)(KMε UMε φ)(x), (11)

and the eigenvalues and eigenvectors (at the sample points) will be identical.
We will study a range of weighted operators of a form similar to (11) and we will write them

for short in the following manner:

PMε = UMε KMε UMε .

In this paper we are required to consider two limits and their associated errors: the stochas-
tic, so-called “variance” error as the finite sample size M → ∞ for fixed timestep ε, and the
deterministic, so-called “bias” error, in the spatial continuum limit as the timestep ε → 0. We
will show in Section 8 that the discrete kernel operator KMε converges in the M →∞ data limit
to a continuum kernel operator

(Kεφ)(x) =

∫
gε(x− y)φ(y)ρ(y) dy = (Cερφ)(x). (12)

In the infinite data limit we will show in Section 9 that the UMε converge to functions Uε that
satisfy a continuum version of the Sinkhorn problem

Uε(x) (KεUε)(x) ≡ 1. (13)

From this we have a deterministic approximation to the semigroup eεL

Pε = UεKεUε, (14)

to which we expect the normalised discrete operator PMε to converge.
Because the two limits require the use of different function spaces to attain the appropriate

convergence rates we will consider semi-conjugacies of our operators PMε and Pε that will be
bounded on the space of continuous functions C0. For concision, in this discussion we will take

“A(M)
ε ” to mean “Aε (resp. AMε )”.

Using that K(M)
ε = Cε/2K(M)

ε/2 we will define the half-step weight functions

Y (M)
ε (x) = (K(M)

ε/2 U
(M)
ε )(x) (15)

and the half-step operators

G(M)
ε = U (M)

ε Cε/2Y (M)
ε (16)

H(M)
ε = (Y (M)

ε )−1K(M)
ε/2 U

(M)
ε . (17)
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These operators G(M)
ε ,H(M)

ε are positive, preserve constant functions and have

P(M)
ε = G(M)

ε H(M)
ε .

We then define the following operators that are semi-conjugate to (PMε )n

Q(M)
n,ε = (H(M)

ε G(M)
ε )n. (18)

To study the situation for the standard weights, we will define the kernel density estimate of
the distribution using the sample:

ρ(M)
ε = K(M)

ε 1

The weight vectors ǔα := (K1)−α and 1/(Kǔα) then extend respectively to the functions

Ǔ (M)
ε,α (x) = (ρ(M)

ε (x))−α. (19)

V̌ (M)
ε,α (x) = 1/(K(M)

ε Ǔ (M)
ε,α )(x). (20)

We then have the approximations to the semigroup eεĽα

P̌(M)
ε,α = V̌ (M)

ε,α K(M)
ε,α Ǔ

(M)
ε,α ,

and the equivalent Y̌
(M)
ε,α , Ǧ(M)

ε,α , Ȟ(M)
ε,α , Q̌(M)

ε,α follow analogously.

2.2 Function spaces

We will use two different classes of function spaces to study the bias and variance error. To
study the variance error, we will need spaces with very strongly compact embeddings into C0,
specifically Hardy spaces of analytic functions. On the other hand, when considering the bias
error we are comparing against the semigroup eεL, and because of our relaxed conditions on the
regularity of ρ, we can only expect the image of the semigroup to be contained in spaces of low
differentiability.

To study the bias error, we will therefore make use of the scales of Sobolev spaces W s,p ⊆
Lp(D,dx) for s ≥ 0, p ∈ (1,∞], which each consist of function classes [φ] for which the norm

‖φ‖W s,p := ‖Js/2φ‖Lp ,

is finite and well-defined, where the operator J = I −∆. For some operator A that is sectorial
(see Section 5) and thus for which a semigroup e−At, t ≥ 0 is defined, we define fractional powers
as inverses of the injections (Henry 2006)

A−s/2 := Γ(s/2)−1

∫ ∞
0

t−s/2−1e−tA dt, s > 0. (21)

The operator J is well-known to be sectorial on all W s,p.
For integer k ≥ 0 the space of k-times continuously differentiable functions Ck is a subset of

W k,∞ with equivalent norms. Furthermore, for all s′ < s, the Hölder space Cs
′ ⊆ W s,∞, and

each [φ] ∈ W s,∞ has an element φ ∈ Cs: the inclusion maps between these function spaces are
continuous.
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On the other hand, to study the convergence of the particle discretisation (i.e. the variance
error), we will use spaces of bounded analytic functions on narrow strips around the domain D.
We therefore define for ζ ≥ 0 the complex domains

Dζ = {x+ iz | x ∈ D, z ∈ [−ζ, ζ]d},

and the corresponding Hardy space

H∞(Dζ) = {φ ∈ C0(Dζ) : φ analytic on int Dζ}

with norm
‖φ‖ζ = sup

z∈Dζ
|φ(z)|.

Note that the Hardy space norm ‖ · ‖ζ is always equal to or greater than ‖ · ‖0, the C0 norm on
the real domain D.

In this paper we will assume that our measure density ρ is strictly bounded away from zero,
and that it lies in the Sobolev space W s,∞, where s > 3/2 for the standard normalisation and
s > 2 for the Sinkhorn normalisation: it is equivalent to assume that ρ ∈ C3/2+β (resp. ρ ∈ C2+β)
for some β > 0.

2.3 Eigendata

The generator L has eigenvalues 0 = −λ0 > −λ1 ≥ −λ2 ≥ · · · , and the semigroup approxima-

tions P(M)
ε have respective eigenvalues 1 = e−ελ

(M)
0,ε > e−ελ

(M)
1,ε ≥ e−ελ

(M)
2,ε ≥ · · · ≥ 0. Note that

the non-negativity of these eigenvalues is guaranteed via positive semi-definiteness of P(M)
ε in

L2(ρ(M)). We denote the corresponding eigenspaces Ek, E
(M)
k,ε , and merge discretised eigenspaces

whose eigenvalues will converge in the limit:

Ē
(M)
k,ε :=

⊕
λj=λk

E
(M)
k,ε .

For the standard weights we define equivalent quantities (where we have positive semi-definiteness

of P̌(M)
ε,α in L2(ρ(M)(Ǔ

(M)
ε,α /V̌

(M)
ε,α )1/2)).

Finally, to quantify the convergence of eigenspaces, we define the distance between vector
subspaces:

dC0(E,F ) = max

{
sup

φ∈BC0 (1)∩E
dC0(φ, F ), sup

φ∈BC0 (1)∩F
dC0(E, φ)

}
.

3 Main results

In this paper we will deterministically bound the “variance” errors, which depend on the empirical
measure ρM , exclusively via an operator error δ:

δ :=
∥∥∥KMε/2 −Kε/2∥∥∥

H∞(Dζ)→C0
,

where ζ = Z0ε
1/2 for some constant Z0. Thus, results in terms of δ can be applied to any point

sample, including weighted, dependent and deterministic samples.
When the empirical measure is an i.i.d. sample from the true density ρ, we have the following

probabilistic bound on δ:
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Theorem 3.1. Suppose ρ ∈ L∞. There exist constants C25, C26 depending only on L, d, ‖ρ‖0, ε0, Z0

such that for all ε < ε0 and c < 1
4‖ρ‖0 log 2,

P (δ > c) ≤ exp
{
C25(log c+ log ε−1)2d+1 − C26Mεd/2c2

}
.

In other words, with very high probability

δ = O
(
M−1/2ε−d/4(logM + log ε−1)d−1/2

)
.

We can now state the main theorems, on convergence of spectral data for the diffusion maps
approximations:

Theorem 3.2 (Spectral convergence for standard weights). Suppose ρ ∈ C3/2+β , β > 0. For all
α ∈ [0, 1] and λ∗ > 0 there exist constants Č101, Č102, Č103 such that if ε+ ε−1δ < Č101, then for
−λk,α ≥ −λ∗ we have

(a) Convergence of eigenvalues of P̌ε,α and P̌Mε,α:

|λ̌k,ε,α − λ̌k,α| ≤ Č102ε

|λ̌Mk,ε,α − λ̌k,α| ≤ Č102(ε+ ε−1δ).

(b) Convergence of the respective eigenspaces:

dC0( ˇ̄Ek,ε,α, Ěk,α) ≤ Č103ε

dC0( ˇ̄EMk,ε,α, Ěk,α) ≤ Č103(ε+ ε−1δ).

Theorem 3.3 (Spectral convergence for Sinkhorn weights). Suppose ρ ∈ C2+β , β > 0. For all
λ∗ > 0 there exist constants C101, C102, C103 such that if ε2 + ε−1δ < C101, then for −λk ≥ −λ∗
we have

(a) Convergence of eigenvalues of Pε and PMε :

|λk,ε − λk| ≤ C102ε
2

|λMk,ε − λk| ≤ C102(ε2 + ε−1δ).

(b) Convergence of the respective eigenspaces:

dC0(Ēk,ε, Ek) ≤ C103ε
2

dC0(ĒMk,ε, Ek) ≤ C103(ε2 + ε−1δ).

An empirical comparison of the bias errors for the standard and Sinkhorn normalisations on
a C2+β sampling distribution is given in Figure 1, demonstrating the optimality of the bias error
bounds, and the better convergence of the Sinkhorn normalisation for α = 1

2 .
The empirical behaviour of variance errors for a three-dimensional example is given in Figure

2. Here the variance error in the spectral data appears to have the central limit theorem conver-
gence in the sample size M that we have shown. However, this convergence occurs in the regime
Meff = Mεd/2 � 1, i.e. up to log terms that δ � 1: this regime is larger than that covered
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Figure 1: Bias error in eigenvalues for C2.2− function density ρ(x) = 1 +
1−3−2.2

2

∑∞
j=1 3−2.2j cos(3j · 2πx) on D = R/Z using a Sinkhorn normalisation (solid lines) and

α = 1
2 standard normalisation (dashed lines). A Fourier operator discretisation with 2001

modes was used to compute the spectrum of the generator L and discrete-time approximations
Pε, P̌ε,1/2.

by our results, ε−1δ � 1. Furthermore, the dependence on the timestep ε appears to be more
gentle than our results would suggest: as ε is decreased with Meff fixed, the variance error in
fact appears to decrease rather than increasing as O(ε−1). This is in accordance with previous
observations that spectral estimates have better convergence than the pointwise estimates that
our results match up to (Trillos et al. 2019, Calder & Trillos 2019).

Rather than the semigroup, one is often interested in the approximating the Laplace-Beltrami
operator L itself via the (possibly weighted) graph Laplacian ε−1(P − I): as an operator, we are
thus interested in

L(M)
ε := ε−1(P(M)

ε − I),

and similarly for the standard weights. The eigenfunctions of these operators are the same as

that of the respective P(M)
ε , thus with the same convergence. On the other hand, if we let the

eigenvalues of L(M)
ε be

−λ̃(M)
k,ε = ε−1(e−λ

(M)
k,ε − I),

and similarly the checked equivalents for standard weights, then we also have convergence of
eigenvalues.

Corollary 3.4 (Eigendata of the graph Laplacian). For all α ∈ [0, 1] and λ∗ > 0 there exist
constants C101, C104, Č101, Č104 such that

(a) The eigenspaces of the graph Laplacians L(M)
ε are those of the respective semigroup approx-

imations P(M)
ε given in Theorems 3.2 and 3.3.

(b) If ρ ∈ C3/2+β and ε+ε−1δ < Č101, then for −λ̌k,α ≥ −λ∗ we have convergence of eigenvalues
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ε = 0.0046
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ε = 0.022

∼M−1/2
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M = 320

M = 1500

M = 6800

M = 32000
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∼ ε−d/4−1

Figure 2: L2(ρM ) error in diffusion maps estimates of eigenspace E1 for function density
ρ(x, y, z) ∝ ecos 4πx+f(y)+f(z) where f(x) = 0.4 cos 2πx+ 0.12 sin 4πx on D = (R/Z)3.
Sinkhorn normalisation (solid lines) and α = 1

2 standard normalisation (dashed lines) are com-
pared. At top, the variance error plotted against local sample size Meff for different ε; at bottom
the combined bias and variance error are plotted against timestep ε for different sample sizes M .
Expectations were computed using 30 samples each. An adaptive Fourier discretisation (Olver
2019) was used to approximate the eigenfunctions of the generator L and of the continuum
semigroup approximations Pε, P̌ε,1/2.
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for the standard weights

|˜̌λk,ε,α − λ̌k,α| ≤ Č104ε,

|˜̌λMk,ε,α − λ̌k,α| ≤ Č104(ε+ ε−1δ).

(c) If ρ ∈ C2+β and ε2 + ε−1δ < C101, then for −λk ≥ −λ∗ we have convergence of eigenvalues
for the Sinkhorn weights

|λ̃k,ε − λk| ≤ C104ε,

|λ̃Mk,ε − λk| ≤ C104(ε+ ε−1δ).

Note however that for purely linear-algebraic reasons the improvement in the bias error to
O(ε2) for Sinkhorn weights is lost.

Our proof of the main results rely on bounds of the deviations of (powers of) our discretised

half-step operators G(M)
ε ,H(M)

ε from their respective limits.
Thus for the Sinkhorn weights, the bias error is bounded according to the following theorem:

Theorem 3.5. Suppose ρ ∈W s,∞, s > 2, and let Sε(t1, t0) be the solution operator of the PDE

∂tφ
t = Lφt +∇ŵtε · ∇φt, (22)

where we define ŵtε := log(KtUε)− 1
2 log ρ for t ∈ [0, ε) and extend ε-periodically.

Then

Gε = Sε(ε,
1
2ε)

Hε = Sε(
1
2ε, 0)

Pε = Sε(ε, 0)

Qε,n = Sε((n+ 1
2 )ε, 1

2ε).

Furthermore, for all T > 0 and β ∈ (0,min{s − 2, 1}) there exists a constant C90,T,β such that
for all 0 ≤ t1 − t0 ≤ T and ε ≤ ε0,

‖Sε(t1, t0)− e(t1−t0)L‖C3+β→C0 ≤ C90,T,βε
2. (23)

If the sampling density ρ has higher regularity, we have the stronger result, which follows
from a simplification of the proof of Theorem 3.5 and implies an O(ε2) pointwise bias error of
the Sinkhorn-weighted graph Laplacian:

Proposition 3.6. Suppose ρ ∈ W s,∞ for s > 4. Then for all β ∈ (0, 1) there exists a constant
C97,β such that for all t ∈ R, ε ≤ ε0,

‖Sε(t+ ε, t)− eεL‖C3+β→C0 ≤ C97,βε
3.

This is the best possible asymptotic rate of convergence to the semigroup for operators of the
form VεKεUε for all non-uniform distributions ρ (see Remark 7.2).

Bounds on the variance error proceed from Theorem 3.1. In particular, we have the following
result on the convergence of the operator KMε (an interpolation of the kernel matrix K) to its
continuum limit:

11



Theorem 3.7. Let ζ = Z0ε
1/2. Then∥∥KMε −Kε∥∥H∞(Dζ)

≤ e2dZ2
0 δ.

Note here that the imaginary-direction thickness ζ of the domain of the Hardy space H∞(Dζ)
scales proportionally with the O(ε1/2) bandwidth of the kernel. A useful consequence of this is
that it is also possible to bound the error of the kth derivative of the spatial discretisation, with
a penalty in the error of O(ε−k/2).

As a consequence of Theorem 3.7, we also have operator convergence of the normalised
operator PMε , which interpolates the matrix P , as well as the various auxiliary operators:

Theorem 3.8. There exist constants Z0, C37, C39 such that if ζ = Z0ε
1/2 and δ ≤ C37 then for

all ε ≤ ε0 and n ∈ N,

‖PMε − Pε‖ζ , ‖GMε − Gε‖0→ζ , ‖HMε −Hε‖ζ→0 ≤ C39δ,

and
‖QMε,n −Qε,n‖0 ≤ C39δn.

4 Numerical computation of Sinkhorn weights

While the use of Sinkhorn weights gives improved convergence in spectral data, it is necessary
to calculate them iteratively: the usual Sinkhorn iteration is known to converge quite slowly in
other problems, and indeed substantial efforts have been dedicated to finding ways to accelerate
the convergence (Thibault et al. 2017, Altschuler et al. 2017, Feydy et al. 2019, Peyré & Cuturi
2019).

However, in our case the extra numerical work necessary to obtain the Sinkhorn weights is
small, as in this section we will present a simple, general, well-conditioned algorithm to estimate
the Sinkhorn weights that converges exponentially at a rate that is independent of the matrix
input.

Let us first note that the traditional way that Sinkhorn weights are calculated is using so-
called Sinkhorn iteration: for symmetric matrices this amounts to repeatedly iterating

u(n+1) = 1/(Ku(n)),

which is interpolated as

U (n+1) = 1/KMε [U (n)]. (24)

As n → ∞, it is well-known that U (n) → c(−1)nUMε for some constant c > 0 (Peyré & Cuturi
2019). The asymptotic rate of convergence can be bounded, since at the fixed point Sinkhorn
iteration is a contraction by λMε,1, the second eigenvalue of the re-weighted operator PMε . This is

because the Jacobian at the fixed point is conjugate to −PMε . However, from Theorem 3.3, the
spectral gap 1− λMε,1 = O(ε), so O(ε−1) iterates are needed to estimate the Sinkhorn weights to
a given tolerance.

To improve this, we propose an accelerated symmetric Sinkhorn algorithm (ASSA, Algorithm
1), which harnesses the symmetry and positive definiteness of the iteration problem to accelerate
the local convergence rate to O(8−n), as well as automatically removing the constant c. An
iteration step of ASSA involves taking two successive Sinkhorn iterates (c.f. (24)), followed by a
geometric mean of the two steps.

12



Data: Unweighted kernel matrix K, timestep ε, eigendata error tolerance τ
Result: Estimated Sinkhorn weight vector u with log-L∞ error less than ετ
u← 1/

√
K1;

repeat
uo ← u;
v ← 1/(Kuo);

u←
√
v/(Kv);

until ‖ log(uo/u)‖`2 ≤ ετ ;

Algorithm 1: Accelerated symmetric Sinkhorn algorithm (ASSA)

We can write this in the case of a kernel operator K as

U (n)
a = 1/K[U (n)] (25)

U
(n)
b = 1/K[U (n)

a ] (26)

U (n+1) =

√
U

(n)
a U

(n)
b . (27)

Because the Jacobian of a Sinkhorn iteration step (24) around the fixed point U is conjugate to
−P := −UKU , the Jacobian of the ASSA step is conjugate to − 1

2P(I−P). In our case P = PMε
is a self-adjoint, positive definite Markov operator on L2(ρM ), so its spectrum is contained in
[0, 1] and so the spectrum of the Jacobian is contained in [− 1

8 , 0], leading to O(8−n) local rate
of contraction. The geometric mean step additionally removes the constant c that is an artefact
of the usual Sinkhorn algorithm. In Theorem 4.1, whose proof is in Appendix A, we show in a
general setting that Algorithm 1 is guaranteed to converge for any positive initial guess, and,
assuming a good initial guess, converges at the O(8−n) rate with a valid stopping condition.
Around 40 ASSA iterates are typically sufficient to obtain an estimate of the Sinkhorn weight
accurate to double floating point.

Theorem 4.1. Suppose µ is a measure and K a positive operator that is bounded, positive
semi-definite and self-adjoint on L2(µ) and bounded on L∞(µ).

Let U solve the Sinkhorn problem for this operator, and let U (n) be the nth iterate of the
accelerated symmetric Sinkhorn algorithm (25− 27) with U (0) > 0 . Then

(a) (Global convergence) For all n ≥ 0 and U (0) > 0,

‖ logU (n) − logU‖L∞(µ) ≤ 2
(
θ 1+θ

2

)n ‖ logU (0) − logU‖L∞(µ),

where θ < 1 is the worst-case contraction rate of standard Sinkhorn iteration, given in the
proof (64).

(b) (Local convergence rate) If ‖ logU (0)−logU‖L∞(µ) ≤ k < 0.1, then if k′′ := ke4k(2+ 1
2ke

4k) <
3
8 , the faster convergence holds

‖ logU (n) − logU‖L2(µ) ≤ ( 1
8 + k′′)n‖ logU (0) − logU‖L2(µ).

(c) (Stopping condition) Under the conditions of part (b),

‖ logU (n) − logU‖L2(µ) ≤ (1− ( 1
8 + k′′)−1)−1‖ logU (n) − logU (n−1)‖L2(µ).
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Figure 3: Convergence of standard Sinkhorn iteration (blue) and ASSA (orange) for an M = 3000
sample from the standard normal distribution in dimension 3 with kernel parameter ε = 0.5.

Proposition 4.2. The empirical measure ρ(M) and kernel operator K(M)
ε respectively satisfy the

conditions for Theorem 4.1.

Note that when µ is a discrete measure (e.g. µ = ρM ) we can recover bounds on the L∞

norm using norm equivalence:

‖ · ‖L∞(ρM ) ≤M−1/2‖ · ‖L2(ρM ).

It is also possible to relax the positive semi-definiteness constraint on the kernel operator K, as
long as the negative spectrum of the weighted operator P is far away from −1.

Because the only steps in ASSA are standard Sinkhorn iteration and a geometric mean, ASSA
is very well-conditioned, and can be expected to perform well in more general circumstances,
including for samples on curved manifolds and from distributions with non-compact support: in
Figure 3 fast convergence of ASSA is shown for a Gaussian sampling distribution.

As an initial value for iteration we use the standard α = 1
2 right-hand weight U (0) =

(KMε 1)−1/2. According to the following proposition, when ε, δ � 1, this guess should be close
enough to the Sinkhorn weight that the fast local convergence rate takes hold immediately.

Proposition 4.3 (ASSA initialisation). There exist constants C120, C121 independent of M, ε
such that if δ < C120 and ε ≤ ε0, then

‖ log(KMε 1)−1/2 − logUMε ‖L∞(ρM ) ≤ C121(δ + ε),

where (KMε 1)−1/2 is the initial condition for ASSA.

These results are proven in Appendix A.

5 Function space results

Before we study the ε→ 0 operator limit, we state some useful results in functional analysis.
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Recall from Section 2.2 that we defined scales of fractional Sobolev spaces W s,p of functions
φ for which Jsφ ∈ Lp, where the sectorial Bessel operator J := I −∆.

A sufficient condition for a Banach space operator A : B → B to be sectorial is that its
spectrum is confined to a left open half-plane and there exists C < ∞ such that for λ in the
complement of this half-plane

‖(λ+A)−1‖B ≤ C|λ|−1.

The operators J and J̃ := I−2L are both well-known to be sectorial on Lp = W 0,p provided that
our measure density ρ ∈ C1+β . The Bessel operator J is also sectorial on W s,p for all positive s.

From Theorem 1.4.8 in Henry (2006) and using that ∇ is bounded as an operator from
W s+1,p → W s,p, we have by induction that J̃ = I − 2L is a sectorial operator on W r,p, r ≤
s, p > 1 and that for β ∈ [0, 1], J̃β/2 is bounded as an operator W r+β,p → W r,p, r ≤ s; the
condition for this to hold is that multiplication by J1/2 log ρ is bounded on W r,p, r ≤ s: this
is assured by the Leibniz rule for fractional derivatives Jβ/2 (Bourgain & Li 2014, Li 2019),
provided ρ ∈W s,p and s ≥ 1.

Standard results, for instance in Chapter 1 of Henry (2006), and the aforementioned Leibniz
rule, give the following, as well as analogues for Ľα:

Proposition 5.1. Suppose that ρ ∈W s,∞ for s ≥ 1. Then for all p ∈ (1,∞]:

• There exist constants K∇p such that for all r ≥ 0

‖∇‖W r+1,p→W r,p , ‖∇ · ‖W r+1,p→W r,p ≤ K∇p ;

• For all 0 ≤ q ≤ r ≤ s there exists a constant K×p;r,s such that for all φ ∈W r,p, ψ ∈W s,∞,

‖φψ‖W r,p ≤ K×p;q,r,s‖φ‖W r,p‖φ‖W s,∞ ;

• For all r < s− 2, there exists Kp;r such that

‖L‖W r+2,p→W r,p ≤ Kp;r;

• For all s < k + β, β ∈ (0, 1), there exists KC
k+β,s such that the norm of the inclusion map

Ck+β →W s,∞ is bounded by KC
k+β,s.

• For all q ≤ r ≤ s and all T > 0 there exists KT
p;q,r such that for t ∈ [0, T ]

‖etL‖W q,∞→W r,∞ ≤ t−(r−q)/2KT
p;q,r;

• There exists a > 0 such that for all q ≤ r ≤ s and all T > 0 there exists K̃T
p;q,r such that

for t ∈ [0, T ]
‖etL|Z∩W q,∞‖W q,∞→W r,∞ ≤ t−(r−q)/2e−atK̃T

p;q,r,

where the L-invariant subspace

Z =

{
φ ∈ L∞ :

∫
D
φ ρdx = 0

}
. (28)
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6 Convergence of Sinkhorn weights as ε→ 0

Our convergence analysis requires an understanding the behaviour of the continuum limit Sinkhorn
weights Uε. These satisfy the equation (13), which in this section we will find useful to formulate
as

U−1
ε = Cε(σ2Uε), (29)

where Cε is convolution with the Gaussian kernel gε,L and σ2 := ρ. We expect Uε to converge to
σ−1 = ρ−1/2 as ε→ 0, but because the kernel gε,L becomes singular as ε→ 0 this is not trivial.

We consider this problem by formulating Uε as the fixed point (up to constant scaling) of
Sinkhorn iteration:

U (n+1) = 1/(Cε(σ2U (n))) (30)

Since for fixed ε > 0 the operator Cεσ2 is uniformly positive, Sinkhorn iteration is a contraction
on the cone of positive functions and thus for all initial conditions U0 > 0 the convergence holds
(Sinkhorn 1964)

U (2n) → cUε, U
(2n+1) → c−1Uε

for some c > 0 depending on U (0). Note that while the iteration (30) in the ε → 0 limit has
2-periodic dynamics for all initial conditions, we do recover a fixed point U0 = ρ−1/2 = σ−1 that
is the solution of the Sinkhorn problem (29) for ε = 0.

Motivated by the log-space formulation of cone metrics we set

wnε = (−1)n log σU (n),

so that

w(2n+1)ε = Nεw2nε (31)

w(2n+2)ε = −Nε(−w2nε), (32)

where the nonlinear semigroup (Nt)t≥0 is given by

Ntφ = log(σ−1Ct(σeφ)).

Using that d
dtCt = 1

2∆Ct it is straightforward to show that the infinitesimal generator of Nt is
given by

d

dt
Ntφ

∣∣∣∣
t=0

= 1
2∆φ+ 1

2 |∇φ|2 +
∇σ
σ
· ∇φ+

∆σ

2σ
.

By using Nt to interpolate (31− 32) in time, we can thus write Sinkhorn iteration as a nonlinear
PDE

∂tw
t = Lwt + (−1)bε

−1tc
(

1
2 |∇wt|2 +

∆σ

2σ

)
. (33)

Note that this PDE can be decomposed as a sum of an autonomous linear part, in fact the
limiting generator of the diffusion maps problem L, with a non-autonomous, rapidly oscillating
nonlinear part that has time integral zero. Consequently, we can apply averaging results to this
system as ε→ 0. This will give us convergence of wt and thus Uε:

Theorem 6.1. Suppose ρ ∈W s,∞, s ≥ 2.
Then the PDE (33) has a unique limit cycle wtε with wt+εε = −wtε and w0

ε = log ρ1/2 + logUε.
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Furthermore for all 0 ≤ r < s+ 1,

lim
ε→0

sup
t
‖wtε‖W r,∞ = 0,

and
lim
ε→0
‖ logUε − log ρ−1/2‖W r,∞ = 0.

This has the following immediate corollary:

Corollary 6.2. Suppose ρ ∈ W s,∞, s ≥ 2. Then there exists a constant C68 such that for all
ε ≤ ε0

sup
ε≤ε0
‖Uε‖C3 ≤ C68 <∞

and for all r < s+ 1 a constant C69,r such that that for all ε ≤ ε0

sup
ε≤ε0

sup
t
‖wtε‖W r,∞ ≤ C69,r <∞.

The uniform bounds on the (2ε-periodic) limit cycle wtε are of particular use to us, because
wtε = (−1)bt/εcwtε: that is, up to a periodic change of sign, it is the same as the ε-periodic drift
error term in the time discretisation of diffusion maps (22).

Remark 6.3. By applying instead Theorem 1.1 of Ilyin (1998), one can show that as ε → 0,
the solution of the Sinkhorn iteration PDE (33), wt, converges to an averaging limit

∂tw̄
t = Lw̄t

over finite time scales (c.f. the Monge-Ampere PDE derived for non-symmetric Sinkhorn iter-
ation in Berman (2017)). As a result, one recovers the asymptotic rate of (standard) Sinkhorn
iteration

lim
n→∞

− log ‖U (n) − Uε‖
n

= −λ1ε,

where −λ1 is the first non-zero eigenvalue of the Langevin dynamics L.

Proof of Theorem 6.1. This amounts to checking the conditions of Theorem 1.2 of Ilyin (1998).
Due to the invariance of constant functions under Sinkhorn iteration we will project our PDE
(33) onto the subspace of zero mean functions Z defined in (28). We thus consider

∂tw
t = Lwt + F(wt, ε−1t) + X (ε−1t), (34)

where

F(φ, τ) = (−1)bτc 1
2 (I −Z)

(
|∇φ|2

)
X (τ) = (−1)bτc(I −Z)

(
∆σ

2σ

)
,

and the projection operator

(Zφ)(x) :=

∫
D
φ(y)ρ(y) dy.

Suppose r ≥ s− 1 (the result will then follow immediately for r < s− 1). Set Banach spaces
E = W r,∞ ∩ Z,F = W r−1,∞ ∩ Z,X = W s−2,∞ ∩ Z and E = Z.
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Proposition 5.1 implies the various conditions on the linear operator L and the averaged
semigroup eLt required for Theorem 1.2 of Ilyin (1998). We also have that the nonlinear part
F : E×R→ F is Lipschitz on bounded subsets of E and the driver X has range in X. Both are
locally integrable over τ . As a result, we have that the attractor of (34) converges in the strong
space E uniformly to the attractor of ∂tw

t = Lwt in E, i.e. zero. In other words, if {wt,Zε }t∈R

is this attractor (which by the convergence of Sinkhorn iteration is necessarily a unique limit
cycle), then

lim
ε→0

sup
t
‖wt,Zε ‖E = 0.

If we let wtε be the solution of the unprojected PDE (33) corresponding to the true Sinkhorn
weights with wnεε = (−1)n log σUε, then for all t one has wt+εε = −wtε; furthermore if wt,Zε is the
attractor (necessarily a limit cycle) of the projected PDE (34) then

wtε − wt,Zε = Zwtε =

∫
D
wtε ρdy.

From (33) and using that ∇wtε = ∇wt,Zε we find that

sup
ε≤ε0

∥∥∂tZwtε∥∥ = sup
ε≤ε0

∣∣∣∣∫
D

(
1
2 |∇wt,Z |2 +

∆σ

2σ

)
ρdx

∣∣∣∣ <∞.
Then using that Zwt+εε = 1

2 (Zwt+εε −Zwtε) implies that

lim
ε→0

sup
t
‖wtε − wt,Zε ‖W r,∞ → 0,

giving us what is required.

Because wtε is up to a time-varying change of sign the drift term in the temporally-discretised
PDE (22), we will find it useful to make some more specific estimates on wtε to prove the operator
convergence in the next section. In particular, we will show that wtε = O(ε), and that wtε is
symmetric in time up to O(ε2).

Lemma 6.4. Suppose ρ ∈W s,∞, s > 2 and wtε is as in Theorem 6.1. Then for all r ∈ [2, s+ 1)
there exist C70,r, C71,r such that for all ε ≤ ε0, t ∈ [0, ε]

‖wtε‖W r−2,∞ ≤ 1
2C71,rε (35)

and
‖J−r∗/2(wtε + wε−tε )‖W r−4+r∗,∞ ≤ C70,rε

2, (36)

where r∗ = max{4− r, 0}.

Proof of Lemma 6.4. Making use of Corollary 6.2 and Proposition 5.1, we have that

‖∂twtε‖W r−2,∞ ≤ 1
2K∞;r−2C69,r +K×∞;,r−2,r−1,r−1(K∇∞C69,r−1)2 +

∥∥∥∥∆ρ1/2

2ρ1/2

∥∥∥∥
W r−2,∞

≤ C72,r

From Theorem 6.1 we have that wtε = −wt−εε , and so as a result

sup
t∈[0,ε]

‖wtε‖W r−2,∞ = sup
t∈[0,ε]

1
2‖wtε − wt−εε ‖W r−2,∞ ≤ 1

2C72,rε,

as required for (35).
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To obtain (36), we will want to take the second derivative in time: however, for r ∈ (2, 4) we
do not have enough regularity in our function spaces to do that, so we will introduce an inverse
fractional derivative J−r

∗/2 to compensate. In particular, we have that for t ∈ (0, ε),

∂ttJ
−r∗/2wt = ∂tJ

−r∗/2∂tw
t

= 1
2∂tJ

−r∗/2(−Jwt + wt +∇ log ρ · ∇wt +∇∂twt · ∇wt + ∆σ/σ)

= − 1
2J

1−r∗/2∂tw
t + 1

2J
−r∗/2∂tw

t + 1
2J
−r∗/2∇(log ρ+ 2wt) · ∇∂twt,

and as a result this second time derivative is uniformly bounded in W r−4+r∗,∞:

‖∂ttJ−r
∗/2wt‖W r−4+r∗,∞ ≤ 1

2C72,r + 1
2C69,r+

1
2K
×
∞;r−4+r∗,r−1,r−3(K∇∞)2C72,r(‖ log ρ‖W r−1,∞ + 2C69,r−1)

=: 1
2C70,r.

Thus, by applying Taylor’s theorem,∥∥∥J−r∗/2 (wtε + wε−tε − 2wε/2ε

)∥∥∥
W r−4+r∗,∞

≤ sup
t∈[0,ε]

‖∂ttJ−r
∗/2wt‖W r−4+r∗,∞ε2 ≤ 1

2C70,rε
2. (37)

Since w0
ε = −wεε, by setting t = 0 in (37) we have

‖2J−r∗/2wε/2ε ‖W r−4+r∗,∞ ≤ 1
2C70,rε

2. (38)

Recombining this with (37) we obtain the necessary result.

Remark 6.5. Since from (38) we have for s > 4 (i.e. ρ ∈ C4+β) that

‖Kε/2Uε − ρ1/2‖L∞ = O(ε2),

the Sinkhorn problem can be used to perform second-order non-parametric estimation on the
density ρ.

7 Deterministic convergence of operators

Recall from (14) that the deterministic approximation to the semigroup is

Pε = UεKεUε.

In this section, we will harness our results on the Sinkhorn weight Uε from the previous section
to Theorem 3.5 on convergence of Pε to the semigroup eεL. Before this, we will make some
remarks on the rate of convergence to the semigroup.

Remark 7.1. For the Sinkhorn normalisation the bias error convergence is of second order in
the timestep ε, unlike the first-order convergence for standard weights (c.f. Proposition 11.3).
This is actually a result of the self-adjointness of the normalised operator.

To be more specific (and to outline the strategy of the proof of Theorem 3.5), we can write
the action of Pε as solving the PDE (22), which we recall here,

φ0 = φ

∂tφ
t = Lφt +∇ŵtε · ∇φt, (39)
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so that φε = Pεφ, where recall that the discrepancy in drift compared with the semigroup is

ŵtε = log(KtUε)− 1
2 log ρ, t ∈ [0, ε).

Note that because the Sinkhorn normalisation (13) is required to be symmetric,

ŵ0
ε = logUε + 1

2 log ρ = − lim
t↑ε

ŵtε.

If φ, ρ, Uε are of sufficiently high regularity, for small ε we can average the PDE (39) over
t ∈ [0, ε]:

∂tφ
t ≈ Lφt +∇

(
ε−1

∫ ε

0

ŵtε dτ

)
· ∇φt.

The averaged drift can then be approximated using the trapezoidal rule with

ε−1

∫ ε

0

ŵετ dτ = 1
2 (ŵ0

ε + lim
t↑ε

ŵtε) +O(ε2) = O(ε2).

As a result the operator Pε should closely approximate eεL, as required.

Remark 7.2. The O(ε3) rate of convergence Pε → eεL is in general the best possible for operators
of the form VεKεUε. We can best see this by comparing the re-weighted operators for n = 1:

σVεKεUεσ−1 = Vεσe
ε

1
2 ∆σUε

and

σeεLσ−1 = eε(
1
2 ∆− 1

2σ
−1∆σ),

where σ = ρ1/2. Taking a power series in ε and writing each side in the form

∑
k≥0

 1
2k

∆k +

k−1∑
j=0

(
βj,k∆j +∇βj,k · ∇∆j−1

) εk,

we see that for the βk−1,k coefficients to match it is necessary that

∂

∂ε
(Vε + Uε)

∣∣∣∣
ε=0

= − 1

2(k − 1)!
σ−2∆σ.

Unless ∆σ ≡ 0, i.e. σ = ρ1/2 is constant, then this can only hold simultaneously for k = 1, 2:
an O(ε3) error between eεL and VεKεUε is thus the best possible (and hence we expect also an
O(ε2) error for the spectral data).

To prove Theorem 3.5, we will require the following result:

Proposition 7.3. Suppose ρ ∈ W s,∞, s > 2. Then for all T > 0, β ∈ (0,min{s − 2, 1}), there
exists a constant C89,T,β such that for all |t1 − t0| ≤ T ,

‖Sε(t1, t0)‖C3+β ≤ C89,T,β .
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Proof of Proposition 7.3. From Corollary 6.2, we have for all r < s + 1 an ε-uniform bound on
the W r,∞ norm of wtε = (−1)bt/εcŵtε. We therefore also have uniform in ε bounds on the C3+β

norm of 1
2 log ρ+ ŵtε for 2 + β < s. We can thus apply Theorem 1.2 of Lorenzi (2000) to (22) to

obtain relevant uniform bounds on ‖Sε(t1, t0)‖C2+β . By observing that (22) implies that

∂t∂xiφ
t = L∂xiφt +∇∂xi( 1

2 log ρ+ wt) · ∇φt, (40)

we can then re-apply Lorenzi (2000) to obtain bounds on ‖Sε(t1, t0)‖C3+β .

We now prove Theorem 3.5.

Proof of Theorem 3.5. The definitions of Gε,Hε,Pε,Qε,n follow immediately by observing that
for 0 ≤ t0 < t1 ≤ ε,

Sε(t1, t0)φ = (Kt1Uε)−1Ct1−t0((Kt0Uε)φ).

Writing S0(t1, t0) = e(t1−t0)L, the discrepancy in the errors is

Sε(t1, t0)− S0(t1, t0) =

∫ t1

t0

S0(t1, τ)∇ŵτε · ∇Sε(τ, t1) dτ. (41)

We can then bound

‖Sε(t1, t0)− S0(t1, t0)‖C3+β→L∞ ≤ (t1 − t0) sup
τ∈[0,ε]

(
‖S0(t1, τ)‖L∞K×∞;0,0,1K

∇
∞‖ŵτε‖W 1,∞×

K∇∞‖Sε(τ, t0)‖C3+β→W 1,∞
)

≤ εK×∞;0,0,1(K∇∞)2C71,1ε ‖Sε(τ, t0)‖C3+β→W 1,∞ε

≤ εK×∞;0,0,1(K∇∞)2C71,1K
C
3+β,1C89,T,βε

2,

where in the second-last inequality we used that ŵtε = (−1)bt/εcwtε, and then Lemma 6.4, and in
the last inequality Proposition 7.3.

Using that Sε(t1, t0)L∞ ⊂ C0 and that the C3+β norm dominates the W 1,∞ norm, we obtain
(23) for t1 − t0 < ε.
We can use the previous result to reduce from all 0 < t1 − t0 < T to the case where t1 − t0 is a
multiple of ε: mathematically, this is because if m = b(t1 − t0)/εc, then we have

‖Sε(t1, t0)− S0(t1, t0)‖C3+β→L∞

≤ ‖Sε(t1, t0 +mε)‖L∞‖Sε(t0 +mε, t0)− S0(t0 +mε, t0)‖C3+β→L∞

+ ‖Sε(t1, t0 +mε)− S0(t1, t0 +mε)‖C3+β→L∞‖S0(t0 +mε, t0)‖C3+β

≤ ‖Sε(t0 +mε, t0)− S0(t0 +mε, t0)‖C3+β→L∞

+KT
∞;3,3‖Sε(t1, t0 +mε)− S0(t1, t0 +mε)‖C3+β→L∞ .

At the same time, simply applying the previous argument to t1 − t0 = mε will give an error of
size O(ε) instead of O(ε2): we need to average over a cycle of wtε. The aim is to move all the
∇ŵτε · ∇ drift operators in (41) in a period of ŵτε to the same point in time, and show that their
average is small (c.f. Ilyin (1998), Chapter 7 of Henry (2006)).

To move the drift operators in time we will use that∥∥∥∥ ddτ Sε(τ, t0)

∥∥∥∥
C3+β→W 1,∞

= ‖L+∇wτε · ∇‖W 3,∞→W 1,∞KC
3+β,3‖Sε(τ, t0)‖C3+β

≤ (K∞;3 +K×∞;1,1,1C71,2(K∇∞)2ε0)KC
3+β,3C89,T,β := C92,T,β ,
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so that if t̄ = s+ εbε−1(τ − t0)c,

‖Sε(τ, t0)− Sε(t̄, t0)‖C3+β→W 1,∞ ≤ C92,T,βε,

and so using Lemma 6.4,

‖S0(t1, τ)∇ŵτε · ∇(Sε(τ, t0)− Sε(t̄, t0))‖C3+β→L∞ ≤ (K∇∞)2C71,1C92,T,βε.

To change the length of the S0 part, we use that, for any r ∈ (3,min{s+ 1, 4}),∥∥∥∥ ddτ S0(t1, τ)

∥∥∥∥
W r−2,∞→L∞

= ‖L‖W 2,∞→L∞‖S0(t1, τ)‖W r−2,∞→W 2,∞

≤ K∞;0(t1 − τ)r/2−2KT
∞;r−2,2,

so by integrating we have

‖S0(t1, τ)−S0(t1, t̄)‖W r−2,∞→L∞ ≤ K∞;0K
T
∞;r−2,2( r2−1)−1

(
(t1 − t̄)r/2−1 − (t1 − ε− t̄)r/2−1

)
ε.

We can then bound the remaining part as

‖∇ŵτε · ∇Sε(t̄, t0)‖C3+β→W r−2,∞ ≤ C89,T,βK
C
3+β,3K

×
∞;r−2,r−2,2(K∇∞)2C71,r−2.

As a result, for some constant C93,T,β we have

‖S0(t1, τ)∇ŵτε · ∇Sε(τ, t1)− S0(t1, t̄)∇ŵτε · ∇Sε(t̄, t1)‖C3+β→L∞

≤ C93,T,β

(
(t1 − t̄)r/2−1 − (t1 − ε− t̄)r/2−1

)
ε,

and so using (41),

‖Sε(t0 +mε, t0)− S0(t0 +mε, t0)‖C3+β→L∞

≤ C93,T,β max{mε, (mε)r/2−1}ε2 +

m−1∑
n=0

∥∥∥e(m−n)εL∇w̄ε · ∇Sε(t0 + nε, t0)
∥∥∥
C3+β→L∞

, (42)

where

w̄ε :=

∫ t0+ε

t0

wtε dt.

Then, using that ∫ t0+ε

t0

ŵtε dt =

∫ ε

0

wtε dt =

∫ ε/2

0

(wtε + wε−tε ) dt,

we have from Lemma 6.4 that, for r ∈ (3,min{4, s}),

‖J−(4−r)/2w̄ε‖L∞ ≤ 1
2C70,rε

3.

This means that w̄ε, a function in W r,∞, is particularly small in the negative Sobolev norm
W r−4,∞. To avoid dealing with negative Sobolev spaces, which particularly due to the endpoint
parameter of integrability p = ∞ are complex to negotiate, we make an excursion into spaces
associated with ∞ > p � 1, where we can easily apply dual norms to get the result we would
like.
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If we let p ∈ (1,∞) and set q−1 = 1− p−1, then we have that for φ ∈W 3,∞,∥∥∥e(m−n)εL/2∇w̄ε · ∇φ
∥∥∥
Lp

= sup
‖ψ‖q=1

∫
D
ψe(m−n)εL∇w̄ε · ∇φdx.

Since e(m−n)εL/2 = e
1
2 (t−t̄)L is a symmetric kernel operator with respect to the measure ρdx,

this and integration by parts give that∫
D
ψe(m−n)εL/2∇w̄ε · ∇ dx = −

∫
D
w̄εg dx, (43)

where
g := ∇ ·

(
(e(m−n)εLρ−1ψ) ρ∇φ

)
.

This term can be bounded in the W 4−r,q norm with liberal use of Proposition 5.1, by using that∥∥∥∇ · ((e(m−n)εL/2ρ−1ψ
)
ρ∇φ

)∥∥∥
W 4−r,q

≤ K∇q K×q;5−r,5−r,2
∥∥∥(e(m−n)εL/2ρ−1ψ

)
ρ
∥∥∥
W 5−r,q

K∇∞‖φ‖W 3,∞

and

‖
(
e(m−n)εL/2ρ−1ψ

)
ρ‖W 5−r,q ≤ K×q;5−r,5−r,3‖ρ‖W 2,∞KT

q;0,5−r((m− n)ε/2)−(5−r)/2‖ρ−1‖∞.

Thus, there exist constants C94,T,p,r such that for all (m− n)ε ≤ T ,

‖g‖W 4−r,q ≤ C94,T,p((m− n)ε)−(5−r)/2.

Returning to (43), we obtain that∫
D
w̄εg dx =

∫
D

(J−(4−r)/2w̄ε)(J
(4−r)/2g) dx,

using firstly that J−(r−2)/2JJ (4−r)/2 is the identity, secondly that from (21), J−(r−2)/2 is a
symmetric kernel operator, and finally integration by parts. Using this we can deduce that∫

D
w̄εg dx ≤ ‖J−(4−r)/2w̄ε‖Lp‖g‖W 4−r,q

≤ |D|1/p‖J−(4−r)/2w̄ε‖L∞C94,T,p,r((m− n)ε)−(5−r)/2

≤ Ld/p 1
2C70,rε

3C94,T,p,r((m− n)ε)−(5−r)/2

:= C95,T,p,r((m− n)ε)−(5−r)/2ε3.

As a result, we can say that∥∥∥e(m−n)εL/2∇w̄ε · ∇Sε(t0 + nε, t0)
∥∥∥
W 3,∞→Lp

≤ C95,T,p,r((m− n)ε)−(5−r)/2ε3. (44)

To obtain (42) from (44), it remains to obtain a bound on the rest of the action of the semigroup
‖e(m−n)εL/2‖Lp→L∞ . Recalling the definition of the Gaussian kernel (7), we use the Gaussian
upper estimate (Liskevich & Semenov 2000) that for t ≤ T ,

(etL/2φ)(x) ≤ C96

∫
gC97t(x− y)φ(y)dy
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for some C96, C97 depending on ‖∇ log ρ‖L∞ , L, d, T , to get that

‖etL/2φ‖L∞ ≤ C96‖gC97t/2‖Lq‖φ‖Lp ≤ C96q
−d/2q(C97t/2)−d/p‖φ‖Lp := C98,pt

−d/p‖φ‖Lp .

Then, applying also Proposition 7.3 for the norm of Sε(t0 + nε, t0), we have∥∥∥e(m−n)εL∇w̄ε · ∇Sε(t0 + nε, t0)
∥∥∥
W 3,∞→L∞

≤ C98,pC95,T,p,rK
C
3+β,3C89,T,β((m−n)ε)−(5−r)/2−d/pε3.

(45)
Fixing r and choosing p > 2d/(r−3) we have (5−r)/2+d/p < 1 and thus there exists a constant
C96,T,β such that for mε ≤ T ,

m−1∑
n=0

∥∥∥e(m−n)εL∇w̄ε · ∇Sε(t0 + nε, t0)
∥∥∥
W 3,∞→L∞

≤ C96,T,βε
2.

Combining this with (42) gives us (23) for t1 = t0 +mε as required.

8 Convergence of kernel operator in finite data approxi-
mation

We now turn to the “variance” error, i.e. the convergence of the finite data approximation as
the sample size M →∞. In this section we begin by showing the convergence of the discretised
Gaussian kernel KMε to the continuum limit Kε. We prove convergence first pointwise for fixed
functions, then extend to convergence in norm on fixed functions, and then finally to norm-
convergence of operators.

Recall from (9− 12) that we defined the operators Kε and KMε as

(Kεφ)(x) =

∫
gε,L(x− y)φ(y)ρ(y) dy (46)

and

(KMε φ)(x) =
1

M

M∑
i=1

gε,L(x− xi)φ(xi). (47)

Since the {xi} are sampled from the measure ρ, the continuous operator Kεφ is the expectation
of the discretised operator KMε φ with respect to this sampling. Because the discretised operator
is the sum of independent random variables gε,L(x − xi)φ(xi), it is therefore natural to try to
construct central limit theorems.

The basic result we will use for this purpose is the following general result that provides
strong quantitative control on the tail probabilities:

Lemma 8.1. Consider an i.i.d. collection of bounded, centred random variables Xi. Then if
E[X2] ≤ ν and c ≤ 2 log 2ν/‖X‖0,

P

(∣∣∣∣∣ 1

M

M∑
i=1

Xi

∣∣∣∣∣ > c

)
≤ 2e−Mc2/4ν .

Proof. We have the Chernoff bound

P

(
1

M

M∑
i=1

Xi > c

)
≤ min

t
e−MctE[etX ]M .
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The second derivative of E[etX ], the moment generating function of X, can be bounded

d2

dt2
E[etX ] = E[X2etX ] ≤ νe|t|‖X‖L∞ ,

and therefore using Taylor’s theorem and that E[X] = 0,

E[etX ] ≤ 1 + 1
2 t

2νe|t|‖X‖L∞ ≤ e
1
2 t

2νe|t|‖X‖L∞ .

Consequently,

P

(
1

M

M∑
i=1

Xi > c

)
≤ min

t
e−MctE[etX ]M ≤ min

t
e−Mct+

1
2Mt2E[X2]e|t|‖X‖L∞ .

If we set t = c/2ν, we have by stipulation that e|t|‖X‖L∞ ≤ 2 and so

P

(
1

M

M∑
i=1

Xi > c

)
≤ e−Mc2/4ν .

The lower bound follows similarly, giving the required bound.

To deal with the fact that we are using the periodised Gaussian kernel gε,L rather than the
standard one gε, we will require the following proposition:

Proposition 8.2. Define the increasing functions of ε

γε,L =
∑
j∈Z

e−j
2L2/2ε,

γ′ε,L =

∞∑
j=1

(2j + 1)Lε−1/2e−(2j−1)2L2/8ε.

Then for all x ∈ [−L/2, L/2]d,

gε,L(x) ≤ (1 + γε,L)dgε(x),

sup gε,L ≤ γdε,Lgε(0),

Lip gε,L ≤ γ′L,ε,d Lip gε,

where
γ′L,ε,d := e−1 + dγ′ε,Lγ

d−1
ε,L .

The next lemma, on pointwise evaluation of the operators we are interested in, follows from
Lemma 8.1.

Lemma 8.3. For all φ ∈ C0, c ≤ ‖ρ‖0 log 2 and x ∈ D,

P
(
|(KMε φ)(x)− (Kεφ)(x)| > c‖φ‖0

)
≤ 2 exp

{
− Mc2

4γdε,L(2πε)−d/2‖ρ‖0

}
.
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Proof of Lemma 8.3. Equations (46− 47) and the independent sampling of the xi from ρ mean
that (KMε φ)(x) is a sum of i.i.d. centred, bounded random variables:

(KMε φ)(x) =
1

M

M∑
i=1

gx(xi),

where
gx(y) = gε,L(x− y)φ(xi)− Ey[gε,L(x− y)φ(y)].

The sup-norm of this function is bounded as

‖gx‖0 ≤ 2‖gε,L(x− ·)φ(·)‖0 ≤ 2(2πε)−d/2γdε,L‖φ‖0,

and the L2 norm as

E[gx)2] ≤ Ey[gε,L(x− y)2φ(y)2]

=

∫
gε,L(x− y)2φ(y)2ρ(y)dy

≤ (2πε)−d/2γdε,L‖φ‖20‖ρ‖0.

From an application of Lemma 8.1 the result then follows.

By using the compactness of our domain D we can extend this to bounds on the function
norms:

Lemma 8.4. There exist constants C0, C1 depending only on L, d, ‖ρ‖0, ε0 such that for all
ε < ε0, φ ∈ C0 and c < ‖ρ‖0 log 2,

P
(∥∥(KMε −Kε)φ

∥∥
0
> 2c‖φ‖0

)
≤ 2C1c

−dε−d(d+1)/2 exp
{
−C0Mεd/2c2

}
.

Proof of Lemma 8.4. Firstly, we have the deterministic bound that

Lip(Kε −KMε )φ ≤ LipKεφ+ LipKMε φ ≤ 2 Lip gε‖φ‖0 = 2ε−1/2(2πε)−d/2γ′L,ε,d‖φ‖0. (48)

Now, define the finite subset of the domain D = [0, L]d

Sξ = {(ξn1, . . . ξnd) : n1, . . . nd = 0, . . . , dL/ξe − 1.}.

No point in D is more than
√
dξ away from an element of Sξ, and Sξ contains no more than

(L/ξ + 1)d points.
By applying Lemma 8.3 and a union bound, we obtain that for all x ∈ Sξ

P

(
sup
x∈Sξ

|(KMε φ)(x)− (Kεφ)(x)| > c‖φ‖0
)
≤ 2(L/ξ + 1)d exp

{
−C0Mεc2

}
,

where the constant
C0 := 1

4γ
−d
ε0,L

(2π)d/2‖ρ‖−1
0 .

Using the Lipschitz bound (48) we can then say that

P

(
sup
x∈D
|(KMε φ)(x)− (Kεφ)(x)| > (c+ 2ε−1/2(2πε)−d/2

√
dγ′L,ε,dξ)‖φ‖0

)
≤ 2(L/ξ + 1)d exp

{
−C0Mεd/2c2

}
.
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Setting

ξ =
cε1/2(2πε)d/2γ′L,ε,d

2
√
d

we obtain

P
(
‖(KMε −Kε)φ‖0 > 2c‖φ‖0

)
≤ 2

(
2L
√
dε−1/2(2πε)−d/2

cγ′L,ε,d
+ 1

)d
exp

{
−C0Mεd/2c2

}
,

which requiring that ε ≤ ε0 and setting

C1 =
(

2L
√
d(2π)−d/2/γ′L,ε0,d + ε

(d+1)/2
0 ‖ρ‖0 log 2

)d
gives the required bound.

We would now like to extend this result to convergence as operators. Recall that we defined
for ζ > 0 the complex domains

Dζ = {x+ iz | x ∈ D, z ∈ [−ζ, ζ]d},

so that D ⊂ Dζ ⊂ (C/LZ)d; we also defined the Hardy spaces

H∞(Dζ) = {φ ∈ C0(Dζ) : φ analytic on int Dζ}

with ‖ · ‖ζ being the C0(Dζ) norm. In Theorems 3.1 and 3.7 (presented in Section 3) we show
that when the size of ζ scales with the kernel bandwidth

√
ε, KMε converges in operator norm to

Kε.
To extend from function-wise convergence to uniform convergence across all functions, we

will again make use of a compactness argument: this time, the compact embedding of H∞(Dζ)
in C0(D). This choice allows us to obtain good operator convergence bounds in the strong space
H∞(Dζ) as, Gaussian convolution Cε maps the weak space C0(D) into the strong space H∞(Dζ)
with an O(1) penalty in norm, provided that ζ is O(ε1/2) (see Proposition 8.8).

However, this scaling restriction on ζ, which arises from the width of the Gaussian kernel,
leads to a complication. The larger complex domain Dζ is only a relatively small extension of the
real domain D, which means that a covering of H∞(Dζ) requires a number of C0(D) balls that
is exponentially large in ε−1/2 and thus jeopardises the Central Limit Theorem bounds obtained
in Lemma 8.4.

However, we can use the Gaussian kernel’s localisation to our advantage, as the values of
KMε φ(x),Kεφ(x) more or less depend only on values of φ inside a ball slightly larger than O(ε1/2).
We thus divide our domain D up into small, overlapping cubes E of this size: the complex ζ-
fattening Eζ is a sufficiently large extension of E and on each of these cubes we therefore have
acceptable covering numbers.

We will make use of the following quantitative compactness result, proved in Appendix B:

Proposition 8.5. Let E ⊂ D be a hypercube of side length 2` ≥ 2ζ/η0 and, Eζ the closed
ζ-fattening of E

Eζ = {x ∈ Dζ : d(x, E) ≤ ζ}.
There exist constants C11, C12 dependent only on η0, d such that for each ξ ∈ (0, 1

2 ) there

exists a set S`,ζξ such that for every function φ ∈ H∞(Eζ) with ‖φ‖H∞(Eζ) ≤ 1,

sup
ψ∈S`,ζξ

‖φ− ψ‖C0(E) ≤ ξ, (49)

27



and the cardinality of S`,ζξ is bounded by

|S`,ζξ | ≤ e(C11 log ξ−1+C12 log(ζ−1`))(ζ−1` log ξ−1)d .

Using Proposition 8.5 we can prove central limit theorem-style bounds on the operator norm
of KMε −Kε from a strong space associated with a larger cube E to a weak space associated with
a smaller cube E.

Proposition 8.6. Let E be as in Proposition 8.7 and let E be a hypercube of side length
2l < 2` centred inside E. Then there exist positive constants C12, C13, C14 dependent only on
‖ρ‖0, d, L, η0, ε0 such that for c ≤ ‖ρ‖0 log 2,

P
(
‖(KMε −Kε)1E‖H∞(Eζ)→C0(E) ≥ 3c‖φ‖0

)
≤ exp

{
(C13 log ε−1 + C14 log c−1 + C12 log(`/ζ))d+1(`/ζ)d − Mc2

4(2πε)−d/2‖ρ‖0

}
.

Proof of Proposition 8.6. The proof proceeds analogously to the proof of Lemma 8.4.
Let S`,ζξ be as in Proposition 8.5. The difference between the operators can be bounded

deterministically by

‖KMε −Kε‖0 ≤ ‖KMε ‖0 + ‖Kε‖0 ≤ 2γdε,L(2πε)−d/2

and so, using (49),

sup
ψ∈S`,ζξ

∥∥∥(KMε −Kε)1E(‖φ‖−1
ζ φ− ψ)

∥∥∥
C0(E)

≤ 2γdε,L(2πε)−d/2ξ (50)

for all φ in the unit ball of H∞(Eζ).
On the other hand, we can apply Lemma 8.4 and a union bound to show that

P

 sup
ψ∈S`,ζξ

‖(KMε −Kε)1Eψ‖0 > 2c

 ≤ |S`,ζξ |C1c
−dε−d(d+1)/2 exp

{
−C0Mεd/2c2

}
. (51)

By combining (50− 51) and setting ξ = (2πε)d/2c/2γdε,L we obtain that

P

(
sup

‖φ‖H∞(Eζ)≤1

‖(KMε −Kε)1Eφ‖0 > 3c

)
≤ |S`,ζ

(2πε)d/2c/2γdε,L
|C1c

−dε−d(d+1)/2 exp
{
−C0Mεd/2c2

}
,

which using that ε ≤ ε0, `/ζ ≥ η0 and c ≤ ‖ρ‖0 log 2 and the bound on S`,ζξ in Proposition 8.5
gives the required bound.

We can also make a deterministic bound on the error that this restriction to the larger cube
E introduces relative to the full diffusion:

Proposition 8.7. Let E , E be as in Proposition 8.6. Then

‖(KMε −Kε)1D\E‖H∞(Dζ)→C0(E) ≤ 2(1 + γε,L)d(2πε)−d/2e−(`−l)2/2ε.
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Proof of Proposition 8.7. For x ∈ E,

|KMε 1D\Eφ(x)| ≤ 1

M

M∑
i=1

|g(x− xi)|1D\E(x
i)‖φ‖0

≤ sup
y∈D\E

g(x− y)‖φ‖0

≤ (2πε)−d/2(1 + γε,L)de−(`−l)2/2ε‖φ‖0.

Similarly,

|Kε1D\Eφ(x)| ≤ (2πε)−d/2(1 + γε,L)de−(`−l)2/2ε‖φ‖0

Combining these results and using that ‖ · ‖0 ≤ ‖ · ‖ζ we obtain what is required.

This is enough for us to prove Theorem 3.1

Proof of Theorem 3.1. Set

` = 2l =
√

8εmin{1, log(2(1 + γε,L)dc−1(2πε)−d/2)}.

From Proposition 8.7 we thus have

‖(KMε −Kε)1D\E‖H∞(Dζ)→C0(E) ≤ c.

Combining this with Proposition 8.6 and using that `/ζ ≤ C16 log(c−1ε−1) we have

P
(
‖(KMε −Kε)1E‖H∞(Eζ)→C0(E) ≥ 4c‖φ‖0

)
≤ exp

{
(C17 log ε−1 + C18 log c−1)d+1 log(c−1ε−1)d − Mc2

4(2πε)−d/2‖ρ‖0

}
.

The full domain D can be covered by dL/led ≤ (1 + L/
√

8ε)d hypercubes of side-length l.
Thus

P
(
‖(KMε −Kε)1E‖H∞(Eζ)→C0(D) ≥ 4c‖φ‖0

)
≤ exp

{
C20(log(2εc)−1)2d+1 − C0Mεd/2c2

}
, (52)

which by relabelling 4c → c and ε → ε/2, and setting C26 = 2−d/2C0/64 gives us (3.1), as
required.

The remaining necessary ingredient for the proof of Theorem 3.7 is a bound taking one from
the weak space back into the strong space. Recall the definition of the Gaussian kernel operator
(8):

Cεφ(x) =

∫
D
gε,L(x− y)φ(y) dy.

Then the following proposition holds:

Proposition 8.8. For all φ ∈ C0(D),

‖Cεφ‖ζ ≤ edζ
2/2ε‖φ‖0.
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Proof of Proposition 8.8. Extending φ periodically to Rd, we find that

‖Cεφ‖ζ = sup
x∈D,z∈[−ζ,ζ]d

∣∣∣∣∫
Rd

(2πε)−d/2e−(x−y+iz)2/2εφ(y) dy

∣∣∣∣
≤ sup
x∈D,z∈[−ζ,ζ]d

∫
Rd

(2πε)−d/2e−<
∑d
j=1(xj−yj+izj)2/2ε‖φ‖0 dy

= sup
z∈[−ζ,ζ]d

e|z|
2/2ε‖φ‖0,

giving the required result.

Proof of Theorem 3.7. We can decompose

KMε −Kε = Cε/2(KMε/2 −Kε/2),

where we recall that Cε is convolution by a Gaussian of variance ε. Combining Proposition 8.8
and Theorem 3.1, we obtain the necessary bound in the H∞ norm.

9 Convergence of the weighted operator in finite data ap-
proximation

We now turn to the normalised operator PMε . We must first bound the convergence of the
function UMε solving the discretised Sinkhorn problem (10) converges to the continuum limit Uε
solving (13). To apply uniform bounds on Uε and (I − Pε)−1 in the C0 norm to Hardy spaces,
we will find the following proposition, whose proof is in Appendix C useful:

Proposition 9.1. Suppose that φ > 0. Then if ζ = Z0ε
1/2 with

Z0 ≤
π

8d
(‖φ‖0‖φ−1‖0‖ρ‖0‖ρ−1‖0)−2,

then if ψ = 1/(Kφ), the bounds in the Hardy norm hold

‖ψ‖ζ ≤ 2‖φ−1‖0
‖ψ−1‖ζ ≤ e2dZ2

0‖ρ‖0‖φ‖0.

As an immediate consequence we have

Proposition 9.2. If ζ = Z0ε
1/2 with Z0 ≤ π(‖ρ‖0‖ρ−1‖0C2

68)−2/8d, where C68 is defined in
Theorem 6.1, then

‖Uε‖ζ ≤ 2C−1
68 , (53)

We will also find the following proposition useful:

Proposition 9.3. There exists a constant C48 such that for all ε < ε0 and Z0 as in Proposition
9.2, then

‖(I + Pε)−1‖ζ ≤ C48. (54)

To prove this proposition we require the following result, whose proof is in Appendix C.

Lemma 9.4. There exists a constant C40 such that for all ε ≤ ε0,

‖(I + Pε)−1‖0 ≤ C40.
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Proof of Proposition 9.3. We decompose

(I − Pε)−1 = I + Pε(I − Pε)−1.

We then have for φ ∈ H∞(Dζ) that

‖Pε(I − Pε)−1φ‖ζ ≤ ‖Uε‖ζ‖Dε‖0→ζ‖Uε‖0‖(I − Pε)−1‖0‖φ‖0,

which by an application of Proposition 9.2 and Lemma 9.4 gives

‖Pε(I − Pε)−1φ‖ζ ≤ 2C2
68e

2dZ2
0C40‖φ‖0.

Using that ‖ · ‖0 ≤ ‖ · ‖ζ we obtain the required result.

We can now prove convergence of the Sinkhorn weight as the number of particles M →∞:

Lemma 9.5. Suppose Z0 is as in Proposition 9.2. There exist constants C37, C38 such that if
δ ≤ C37 then

‖UMε − Uε‖ζ , ‖YMε − Yε‖0, ‖(YMε )−1 − (Yε)
−1‖0 ≤ C38δ,

where ζ = Z0ε
1/2.

Proof of Lemma 9.5. We can rewrite (13− 10) as

Uε(x) (KεUε)(x) ≡ 1

UMε (x) (KMε UMε )(x) ≡ 1.

If for θ ∈ [0, 1] we set
Kθε := (1− θ)Kε + θKMε

then we obtain a one-parameter family of Sinkhorn weight functions Uθε solving

Uθε (x) (KθεUθε )(x) ≡ 1. (55)

The existence and uniqueness of the Uθε follow from the positivity of the operator Kθε , on L∞(D)
for θ ∈ [0, 1) and on L∞({xi}i=1...M ) for θ = 1.

Furthermore, because
d

dθ
Kθε = KMε −Kε

is a bounded operator on H∞ζ , we can apply the implicit function theorem to (55) as long as Uθε
stays in H∞ζ , so that

d

dθ
logUθε = −(I + UθεKθεUθε )−1Uθε (x)

(
(KMε −Kε)Uθε

)
(x).

We have from Propositions 9.2 and 9.3 that ‖Uε‖ζ ≤ 2C68, and ‖(I−Pε)−1‖ζ ≤ C48, and from

Theorem 3.7 that ‖KMε −Kε‖ζ ≤ e2dZ2
0 δ. Note that since Pε has 1 as an eigenvalue, C48 ≥ 1/2.

If B(θ) := ‖ logUθε − logUε‖ζ , then

B′(θ) ≤
∥∥∥∥ d

dθ
logUθε

∥∥∥∥
ζ

≤ C48(1− C48‖UθεKθεUθε − Pε‖ζ)−1e2dZ2
0 δ‖Uθε ‖ζ .
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Because ‖Uθε ‖ζ ≤ 2C68e
B(θ),

B′(θ) ≤ 4C2
68C48e

2dZ2
0 δe2B(θ)

1− 4C2
68C48(‖Kθε‖ζB(θ)(e2B(θ) + eB(θ) + e2dZ2

0 δeB(θ)))

and because ‖Kθε‖ζ ≤ ‖Kε‖ζ + θe2dZ2
0 δ ≤ 1 + e2dZ2

0 δ,

B′(θ) ≤ 4C2
68C48e

2dZ2
0 δe2B(θ)

1− 4C2
68C48(2(1 + e2dZ2

0 δ)B(θ)e2B(θ) + e2dZ2
0 δeB(θ)))

.

Thus, as long as B(θ) ≤ min{e2dZ2
0 δ, C30} and δ ≤ C31/(4C

2
68C48e

2dZ2
0 ) =: C35 for some fixed

constants C30, C31, C32,

B′(θ) ≤ C324C2
68C48e

2dZ2
0 δ

and thus
‖ logUε − logUMε ‖ζ ≤ B(1) ≤ C324C2

68C48e
2dZ2

0 δ.

Furthermore, for some fixed constant C33,

‖UMε − Uε‖ζ ≤ ‖Uε‖ζ
(
e‖ logUε−logUMε ‖ζ − 1

)
≤ C338C3

68C48e
2dZ2

0 δ

≤ C338C3
68C48e

2dZ2
0 δ =: C34δ,

as required.

To prove the second part, we use the definition of Y
(M)
ε in (15) to say that

YMε − Yε = (KMε/2 −Kε/2)UMε −Kε/2(UMε − Uε)

and so
‖YMε − Yε‖0 ≤ (2C68 + C35 + C34)δ =: C36δ.

Furthermore,

(YMε )−1 − (Yε)
−1 =

Y −2
ε (YMε − Yε)

1− Y −1
ε (Yε − YMε )

and so using that

‖Y −1
ε ‖0 ≤ ‖ρ−1‖0‖U−1

ε ‖0 ≤ ‖ρ−1‖0‖ρUε‖0 = ‖ρ−1‖0‖ρ‖0C68,

we have that provided that δ < min{C35, (C36
1
2‖ρ−1‖0‖ρ‖0C68)−1} =: C37,

‖(YMε )−1 − (Yε)
−1‖0 ≤ 2(‖ρ−1‖0‖ρ‖0C68)2C36δ =: C38δ.

Readjusting C38 = max{C34, C36, C38}, we have what is required.

The convergence of the Sinkhorn-weighted operator then follows in Theorem 3.8, which we
prove here:

Proof of Theorem 3.8. We can decompose

PMε − Pε = UMε (KMε −Kε)UMε + UMε Kε(UMε − Uε) + (UMε − Uε)KεUε.
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Using Lemma 9.5, Propositions 9.2 and 9.3 and that ‖Kε‖ζ ≤ ‖ρ‖0 we have that

‖PMε − Pε‖ζ ≤
(
(2C68 + C38C37)2C38 + (2C68 + C38C37)‖ρ‖0C38+

C38‖ρ‖02C68

)
e2dZ2

0 δ,

=: C39δ

for some constant C39.
The corresponding bounds for the half-step operators GMε , HMε and the semi-conjugate op-

erator QMε,1 arise similarly, with an appropriate adjustment of C39; this extends to general

QMε,n = (QMε,1)n by using that QMε,1,Qε,n are row-stochastic and thus have unit C0 norm.

10 Convergence of spectral data

We can now combine our “bias” and “variance” operator errors to understand the convergence

of the spectral data. Instead of the operator P(M)
ε = G(M)

ε H(M)
ε we will consider the semi-

conjugacies Q(M)
ε,1 = H(M)

ε G(M)
ε , so that we can use the function space C0 consistently across the

two limits. The outline of our attack is standard (Keller & Liverani 1999): we will first establish
the convergence of resolvents in a strong space-to-weak space operator norm sense, and then
use this to bound the error in the discretised operators’ spectrum, and in spectral projection
operators (and thus eigenspaces).

While the variance error QMε,n−Qε,n is just a perturbation in operator norm (from Theorem

3.8), the bias error Qε,n − enεL is only small from the strong space C3+β into the weak space
C0. To obtain convergence of resolvents we must therefore quantify the regularising behaviour
of the operators Qε,n from the weak space into the strong space:

Proposition 10.1. Suppose ρ ∈ W s,∞, s > 2, and β ∈ (0,min{s − 2, 1}). For all T̃ > 0 there
exists a constant C100,β depending on T̃ , ρ, β such that for all ε ≤ ε0, nε ≥ T̃

‖Qε,n‖C0→C3+β ≤ C100,

where Qε,n is defined in (18).

Proof. For T̃ ≤ nε ≤ T̃ + ε0 this is a Schauder estimate (Knerr 1980), which can be extended
from C2+β to C3+β along the lines of Proposition 7.3. For larger n, this follows by using that
‖Qε,1‖C0 = 1.

Let us denote the resolvent of an operator A as

Rλ(A) := (λI −A)−1.

We have the following bound on the resolvent of our semigroup in the C0 norm:

Proposition 10.2. For all T̃ > 0 there exists a constant C99 depending on T̃ , ρ such that for
t > T̃

‖Rλ(etL)‖C0 ≤ |λ|−1(1 + C99d(λ, etσ(L))).

Proof. Using that ‖ · ‖C0 ≥ ‖ · ‖L2(ρ) we have

‖Rλ(etL)‖C0 ≤ |λ|−1
(
1 + ‖etL‖L2(ρ)→C0‖Rλ(etL)‖L2(ρ)

)
.
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Upper Gaussian estimates on eT̃L (Liskevich & Semenov 2000) mean that we can bound

‖etL‖L2(ρ)→C0 ≤ ‖eT̃L‖L2(ρ)→C0‖e(t−T̃ )L‖L2(ρ) = ‖eT̃L‖L2(ρ)→C0 =: C99.

Furthermore, since etL is normal in L2(ρ) with spectrum σ(etL) = etσ(L), the resolvent’s norm
is bounded by the distance to the spectrum

‖Rλ(etL)‖L2(ρ) = d(λ, etσ(L)),

giving us what is required.

The following result then allows us to extend the previous bound to resolvents of the discre-
tised operators:

Lemma 10.3. Suppose nε ∈ [T̃ , T ], and let the quantities

X1 = |λ|−2(1 + C99d(λ, etσ(L)))C90,T ,

X2 = 1 + |λ|−1(1 + C99d(λ, etσ(L))),

X3 = |λ|−1C39Tε
−1δX2.

Then if δ < C39,

(a) If C100X1 ≤ 1, then Rλ(Qε,n) is bounded in C0 and

‖Rλ(Qε,n)−Rλ(eLnε)‖C3+β→C0 ≤ X2

1− C100X1
X1.

(b) If C100X1 +X3 ≤ 1, then Rλ(QMε,n) is bounded in C0 and

‖Rλ(QMε,n)−Rλ(Qε,n)‖C0 ≤ |λ|−1X̃1X3

(1− C100X1 −X3)(1− C100X1)
.

Proof of Lemma 10.3. By algebraic manipulations we have both that

Rλ(Qε,n) = λ−1(I +Qε,nRλ(Qε,n)) (56)

and
Rλ(Qε,n) = Rλ(eLnε) + λX1Rλ(Qε,n), (57)

where the operator
X1 = λ−1Rλ(eLnε)(Qε,n − eLnε).

By substituting (57) into (56), we then have that

(I −X1Qε,n)Rλ(Qε,n) = λ−1X2,

where
X2 := I +Qε,nRλ(eLnε).

We then have using Theorem 3.5 that

‖X1‖C3+β→C0 ≤ |λ|−1‖Rλ(eLnε)‖C0‖Qε,n − eLnε‖C3+β→C0 ≤ X1,

‖X2‖C0 ≤ 1 + ‖Rλ(eLnε)‖C0‖Qε,n‖C0 ≤ X2,
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so, using Proposition 10.1, if C100X1 < 1 then

‖Rλ(Qε,n)‖C0 ≤ |λ|−1X2

1− C100X1
<∞. (58)

Then, substituting (56) instead into (57) and rearranging, we obtain that

(I −X1Qε,n)(Rλ(Qε,n)−Rλ(eLnε)) = X1X2

so that again if C100X1 < 1,

‖Rλ(Qε,n)−Rλ(eLnε)‖C3+β→C0 ≤ X2

1− C100X1
X1,

as required for (a).

For part (b), we have that

(Rλ(QMε,n)−Rλ(Qε,n))(I − (QMε,n −Qε,n)Rλ(Qε,n)) = Rλ(Qε,n)(QMε,n −Qε,n)Rλ(Qε,n).

We also have from Theorem 3.8 that

‖QMε,n −Qε,n‖C0 ≤ C39nδ ≤ C39Tε
−1δ,

and so, using (58),

‖(QMε,n −Qε,n)Rλ(Qε,n)‖C0 ≤ X3

1− C100X1
.

Consequently if
X3 + C100X1 < 1,

then

‖Rλ(QMε,n)−Rλ(Qε,n)‖C0 ≤ |λ|−1X2X3

(1− C100X1 −X3)(1− C100X1)

and in particular, Rλ(QMε,n) is bounded.

Using Lemma 10.3, we can prove Theorem 3.3:

Proof of Theorem 3.3. Fix T and set T̃ = T + 2ε0 and n = dT̃ /εe.
The eigenvalues of Q(M)

ε,n are enελ
(M)
k,ε , and the eigenvalues of eLnε are enλk . On [e−Tλ∗ , 1], the

logarithm function is bi-Lipschitz, so bounds on the errors in the eigenvalues of Q(M)
ε,n translate

to the bounds necessary for the theorem.
By considering the constants in Lemma 10.3 we find that for ε2 and ε−1δ sufficiently small,

the resolvents Rλ(Qε,n), Rλ(QMε,n) are bounded respectively for

d(λ, σ(eLnε)) < C103ε
2,

d(λ, σ(eLnε)) < C104(ε2 + ε−1δ).

This bounds the distances between the spectra of Q(M)
ε,n and of eLnε. Furthermore, if C104(ε2 +δ)

is smaller than r, which we define to be half the smallest gap between distinct eigenvalues and
between the eigenvalues and e−ελ∗ , then by considering the rank of the relevant spectral projec-
tions, the multiplicities are preserved.
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For part (b), we will use the spectral projections, Πk,Π
(M)
k,ε , where Πk is the L2(ρ)-orthogonal

projection onto Ek, and

Π
(M)
k,ε :=

r

2π

∫ 2π

0

Re−nkλk+reiθ (Q(M)
ε,n ) dθ. (59)

When C103(ε2 +δ) < r, then Π
(M)
k,ε are projections onto the finite-dimensional spaces H(M)

ε Ē
(M)
k,ε .

Choose β ∈ (0,min{s − 2, 1}), where s is such that ρ ∈ W s,∞. Lemma 10.3 and equation
(59) give us that

‖ΠM
k,ε −Πk‖C3+β→C0 ≤ C105(ε2 + ε−1δ).

If φ ∈ Ek with ‖φ‖C0 = 1, then

‖eεL/2Πkφ− GMε ΠM
k,εφ‖C0 ≤ ‖(eεL/2 − GMε )Πkφ− GMε (Πk −ΠM

k,ε)φ‖C0

≤
(

(‖eεL/2 − Gε‖C3+β→C0 + ‖Gε − GMε ‖C0)‖Πk‖C3+β

+ C105(ε2 + ε−1δ)
)
‖φ‖C3+β

≤
(
C90,T̃ ε

2 + C39δ)‖Πk‖C3+β + C105(ε2 + ε−1δ)
)
‖φ‖C3+β ,

where in the last line we used Theorems 3.5 and 3.8.
We know that Πk is bounded on C3+β (independent of M, ε), and that Ek is a finite-

dimensional subspace of C3+β and thus the C0 and C3+β norms are equivalent, so that then

‖eεL/2Πkφ− GMε ΠM
k,εφ‖C0 ≤ C106(ε2 + ε−1δ)‖φ‖C0

≤ eλ∗ε/2C106(ε2 + ε−1δ)e−λkε/2‖φ‖C0 ,

Now, eεL/2Πkφ = e−λkε/2φ, and GMε ΠM
k,εφ ∈ ĒMk,ε, so

d(φ, ĒMk,ε) ≤ C107(ε2 + ε−1δ).

As a result of Lemma 1 in Osborn (1975), we have what we need for ĒMk,ε; the equivalent for Ēk,ε
holds similarly.

Proof of Corollary 3.4. The difference between the graph Laplacian eigenvalues and the semi-
group eigenvalues can be bounded

|λ̃(M)
k,ε − λ

(M)
k,ε | = ε−1| − e−ελ

(M)
k,ε + 1− ελ(M)

k,ε |
≤ 1

2ε
−1(ελ

(M)
k,ε )2

≤ 1
2λ

2
∗ε ≤ C105ε,

where in the second-last inequality we used from the proof of Theorem 3.3 that −λ(M)
k,ε is forced

to be greater than −λ∗. Combining this bound with Theorem 3.3(a) gives part (b); part (a)
follows similarly from Theorem 3.2(a).

11 Results for standard weights

In this section we will sketch the proof of Theorem 3.2 on the convergence of spectral data for
standard weights. For the most part this closely follows the argument for the Sinkhorn weights,
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however it is somewhat simpler in that the weights are explicitly given, and the bias error is only
first-order in the timestep so the averaging argument is not necessary.

We will again study the bias error by interpolating P̌ε,α in time as a PDE. We begin by
bounding the associated drift term: as with the Sinkhorn weights, we will need to venture into
bounding the norm of inverse derivatives of the drift terms.

Proposition 11.1. Suppose ρ ∈ W s,∞, s > 3
2 and let r∗ = max{0, 2 − s}. Then there exists a

constant C132,s such that for all ε ≥ 0,

‖J−s∗/2 log ρε − log ρ‖W s−2+r∗,∞ ≤ C132,sε.

Proof. Because J and ∆ commute and ‖et∆‖L∞ ≤ 1, for all t

‖ρt‖W s,∞ = ‖et∆/2ρ‖W s,∞ ≤ ‖ρ‖W s,∞ .

Consequently if we set ωt := J−s∗/2 log ρt, then because ρt ≥ inf ρ,

‖ωt‖W s+r∗,∞ = ‖ log ρt‖W s,∞ ≤ C131,s

for some C131,s. Then, because

∂tω
t = 1

2∆ωt + 1
2J
−s∗/2|∇Jr∗/2ωt|2,

there exists C132,s such that for all t ∈ [0, ε0],

‖∂tωt‖W s−2+r∗,∞ ≤ C132,s,

and so
‖J−s∗/2(log ρε − log ρ)‖W s−2+r∗,∞ = ‖ωε − ω0‖W s−2+r∗,∞ ≤ C132,sε,

as required.

Proposition 11.2. Suppose ρ ∈ W s,∞, s > 3
2 . Let w̌tε,α = log(Kε{t/ε}Ǔε,α)− (1− α) log ρ, and

let r∗ = max{0, 2− s}. Then there exists a constant C135,s such that for all ε ∈ [0, ε0],

‖J−s∗/2w̌tε,α‖W s−2+r∗,∞ ≤ C135,sε.

Proof. Because ρε ≤ inf ρ, we know that for all ε ∈ [0, ε0],

‖ρǓε,α‖W s,∞ = ‖ρρ−αε ‖W s,∞ ≤ C134,s

for some constant C134,s. As in Proposition 11.1 this gives us uniform boundedness of J−s∗/2w̌tε,α
in W s+r∗,∞, and so by a similar argument we obtain the required result.

The following proposition bounds the convergence of the continuum operator P̌ε,α as ε→ 0.
In this case an averaging result is not necessary: we only need to bound the drift term.

Proposition 11.3. Suppose ρ ∈W s,∞, s > 3
2 , and let Šε,α(t1, t0) be the solution operator of the

PDE
∂tφ

t = Ľαφt +∇w̌ε,αt · ∇φt, (60)

where w̌ε,αt := log(Kε{t/ε}ρ−αε )− (1− α) log ρ.
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Then

Ǧε,α = Šε,α(ε, 1
2ε)

Ȟε,α = Šε,α( 1
2ε, 0)

P̌ε,α = Šε,α(ε, 0)

Q̌ε,n = Šε,α((n+ 1
2 )ε, 1

2ε).

Furthermore, for all T > 0, β ∈ ( 1
2 ,min{1, s− 1}) there exists a constant Č90,T,β,α such that for

all 0 ≤ t1 − t0 ≤ T and ε ≤ ε0,

‖Šε,α(t1, t0)− e(t1−t0)Ľα‖C2+β→C0 ≤ Č90,T,β,αε. (61)

Proof. The first part is as in the proof of Theorem 3.5.
From Proposition 11.2 we have that for r ∈ ( 3

2 ,min{2, s}),

‖J−r∗/2−1∇w̌tε,α‖W s−2+r∗,∞ ≤ K∇C135,rε,

where r∗ = max{0, 2− r}.
We then have that for β ∈ ( 1

2 ,min{1, r − 1}),

‖Šε,α(t1, t0)− e(t1−t0)Ľα‖C2+β→C0

≤
∫ t1

t0

‖e(τ−t0)Ľα∇w̌εt · ∇‖W r,∞→C0‖Sε(t1, τ)‖C2+β→W r,∞ dτ. (62)

By passing through Lp spaces so as to consider the adjoint and thus implicitly pass into negative
Sobolev spaces, as in the proof of Theorem 3.5, we find that there exist η < 2 and C136,r,β such
that

‖e(t1−τ)Ľα∇w̌εt · ∇‖W r,∞→C0‖Sε(τ, t0)‖C2+β→W r,∞ ≤ C136,r,βε
2(t1 − τ)−η/2,

which by integrating (62) gives the necessary result.

When ρ has higher regularity, we have the following tighter result, comparable to Proposition
3.6:

Proposition 11.4. Suppose ρ ∈ W s,∞ for s > 3. Then for all α ∈ [0, 1], β ∈ (0, 1) there exists
a constant Č97,α,β,T such that for all t0 ≤ t1, ε ≤ ε0,

‖Šε,α(t1, t0)− e(t1−t0)Ľα‖C1+β→C0 ≤ Č97,α,β(t1 − t0)ε.

We now consider the variance error. The following proposition follows directly from Propo-
sition 9.1 and Theorem 3.7.

Proposition 11.5. There exists Z0 such that if ζ = Z0ε
1/2, then for all ε ∈ [0, ε0],

‖ρε‖ζ ≤ e2dZ0‖ρ‖0
‖ρ−1
ε ‖ζ ≤ 2‖ρ−1‖0

‖ρMε − ρε‖ζ ≤ e2dZ0δ. (63)

Using that Ǔε,α = ρ−αε and another application of Proposition 9.1 allows us to bound the
weights:
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Proposition 11.6. There exists Z0 such that if ζ = Z0ε
1/2, then there exists a constant C140

such that for all ε ∈ [0, ε0], α ∈ [0, 1],

‖Ǔε,α‖ζ , ‖1/Ǔε,α‖ζ , ‖V̌ε,α‖ζ , ‖1/V̌ε,α‖ζ ≤ C140.

By combining these estimates with (63), we obtain that

Proposition 11.7. There exist constants Ž0, Č37, Č38 such that for all ε ∈ [0, ε0], α ∈ [0, 1], if
δ ≤ Č37 then

‖ǓMε,α − Ǔε,α‖ζ , ‖V̌Mε,α − V̌ε,α‖ζ , ‖Y̌Mε,α − Y̌ε,α‖0, ‖(Y̌Mε,α)−1 − (Y̌ε,α)−1‖0 ≤ Č38δ,

where ζ = Ž0ε
1/2.

The next proposition then follows along the lines of Theorem 3.8:

Proposition 11.8. There exist Ž0, Č39 such that if ζ̌ = Z0ε
1/2 and δ ≤ Č37 then for all ε ≤ ε0

and n ∈ N,
‖P̌Mε,α − P̌ε,α‖ζ , ‖ǦMε,α − Ǧε,α‖0→ζ , ‖ȞMε,α − Ȟε,α‖ζ→0 ≤ Č39δ,

and
‖Q̌Mε,α,n − Q̌ε,α,n‖0 ≤ Č39δn.

Using Propositions 11.3 and 11.8, the proof of Theorem 3.2 then follows by analogy with
Theorem 3.3.

A Proof of Theorem 4.1 and Proposition 4.3

Proof of Theorem 4.1. In this proof, we will find it useful to define the functions l(n) = logU (n)−
logU , and similarly l

(n)
a , l

(n)
b .

We begin by proving (a) using Birkhoff cones. Let Λ+ be the set of positive, bounded functions
on the support of µ, and let dΛ+ be the projective cone Hilbert metric on Λ+/R+

dΛ+(φ, ψ) := sup log φ
ψ − inf log φ

ψ ≤ 2‖ log φ− logψ‖L∞ .

Then it is well-known (Peyré & Cuturi 2019) that if

θ := tanh

(
1
4 sup
x,y∈suppµ

dΛ+(Kδx,Kδy)

)
< 1, (64)

then by the Birkhoff cone theorem, for any φ ∈ Λ+

dΛ+(1/K[φ], U) = dΛ+(K[φ],K[U ]) ≤ θdΛ+(φ,U).

This gives the contraction rate of standard Sinkhorn iteration.
However, one can also check for any φ, ψ ∈ Λ+,

dΛ+(
√
φψ,U) ≤ 1

2 (dΛ+(φ,U) + dΛ+(ψ,U)).

Applying this to (25− 27) gives that

dΛ+(U (n+1), U) ≤ 1
2 (θ2 + θ)dΛ+(U (n), U).
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Finally, since

el
(n)

=

√
el

(n−1)
a /Pel(n−1)

a ,

where we recall that el
(n−1)
a = U

(n−1)
a /U , and furthermore since∫

(Pel(n)
a − el(n)

a ) dµ = 0,

we find that
sup l(n) ≥ 0 ≥ inf l(n)

so
‖ logU (n) − logU‖L∞ ≤ d(U (n), U),

giving us what we need.

We now consider the local convergence rate. To use the spectral properties of the normalised
operator P := UKU we will pass to the L2(µ) norm.

Using that ‖l(0)‖L∞ ≤ k, then by the previous part, for all n

‖l(n)‖L∞ ≤ 2k,

and the same holds for l
(n)
a , l

(n)
b . Consequently, taking logarithms of exponentials of these func-

tions is Lipschitz with constant e2k; furthermore, for any function l with ‖l‖L∞ ≤ 2k,

‖el − l‖L2 ≤ ke2k‖l‖L2 ,

and so since ‖P‖L∞ = ‖P‖L2 = 1,

‖ePl − Pel‖L2 ≤ ‖ePl − Pl‖L2 + ‖P(l − el)‖L2 ≤ 2ke2k‖l‖L2 .

Since l
(n)
a = − log(Pel(n)

),

‖l(n)
a + Pl(n)‖L2 ≤ e2k‖e−l(n)

a − e−Pl(n)‖L2

= e2k‖Pe−l(n) − e−Pl(n)‖L2

≤ k′‖l(n)‖L2 ,

where k′ = ke4k. Similarly,

‖l(n)
b − (P)2l(n)‖L2 ≤ k′‖l(n)

a ‖L2 + ‖l(n)
a − Pl(n)‖L2 ≤ k′(2 + k′)‖l(n)‖L2

Then, since l(n+1) = 1
2 (l

(n)
a + l

(n)
b ),

‖l(n+1) − 1
2P(I − P)l(n)‖L2 ≤ k′′‖l(n)‖L2 , (65)

where k′′ = k′(2 + 1
2k
′).

Now, P is a Markov operator which is self-adjoint in L2(µ) and, furthermore, positive semi-
definite on this space as K is and U is positive. As a consequence, the spectrum of P is a subset
of [0, 1]. Hence, the spectrum of 1

2P(I − P) is contained in [− 1
8 , 0], and so its L2(µ) norm is

bounded by 1
8 . We thus have

‖l(n)‖L2 ≤
(

1
8 + k′(2 + 1

2k
′)
)n ‖l(0)‖L2 ≤

(
1
8 + k′′

)n ‖l(0)‖∞.
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To prove part (c), we use (65), so that

‖l(n+1)−l(n)‖L2 ≥ ‖−(I+ 1
2P(1−P))l(n)‖L2−k′′‖l(n)‖L2 ≥ ( 7

8−k′′)‖l(n)‖L2 ≥
7
8 − k′′
1
8 + k′′

‖l(n+1)‖L2 ,

Proof of Proposition 4.3. This proposition is a consequence of bounds in the rest of the paper.
We have from Theorem 3.7 that

‖KMε 1−Kε1‖L∞ ≤ e2dζ2δ.

It is a standard result on Gaussian kernels that

‖Kε1− ρ‖L∞ = ‖(Cε − I)ρ‖L∞ ≤ 1
2ε‖ρ‖W 2,∞ .

Lemma 9.5 gives us that if δ ≤ C37 then

‖UMε − Uε‖L∞ ≤ C38δ.

As a result of Theorem 6.1 and Lemma 6.4,

‖ logUε − log ρ−1/2‖L∞ ≤ C71,2ε.

These results together mean that there exist constants C120, C121 such that if δ < C120 and
ε < ε0,

‖ log((KMε 1)−1/2)− logUMε ‖L∞ ≤ C121(δ + ε),

as required.

B Proof of Proposition 8.5

Proof of Proposition 8.5. Let zE be the centre of E , set η = arcsinh(ζ/`) < η0 and define Tdη as

the complex η-fattening of the hyper-torus Td:

Tdη = ((R + i[−η, η])/2πZ)
d

Define the map τ : Tdη → Eζ
τ(z) = ` cos z + zE .

Now the Hardy space H∞(Eζ) is isometrically embedded in the Hardy space of bounded, even
analytic functions on Tdη, H∞even(Tdη), via the map Cτ : φ 7→ φ ◦ τ . This map is also an isometric

embedding of C0(E) into C0(Td).
The Hardy space H∞even(Tdη) in turn is a subset of another Hardy space H2

even(Tdη), consisting

of even analytic functions on Tdη that are bounded with respect to the norm

‖φ‖2H2
even(Tdη) = (4π)−d

∫
∂Tdη

|φ(z)|2dz.

Furthermore, ‖φ‖H2
even(Tdη) ≤ ‖φ‖H∞even(Tdη), so the image of the unit ball CτBH∞(Eζ)(0, 1) is con-

tained in the unit ball of H∞even(Tdη).

On H2
even(Tdη) we have the compactness result:
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Proposition B.1. The unit ball in H2
even(Tdη) may be covered by C0(Td) balls with centres a the

finite set Ŝηξ , and for η ∈ (0, η0) and ξ ∈ (0, 1/2) there exist constants C9, C10 depending only on
η0, d such that

|Ŝηξ | ≤ e(C9 log ξ−1+C10 log η−1)(η−1 log ξ−1)d

As a result, we can cover B := CτBH∞(Eζ)(0, 1) by C0 balls centred at the points in Ŝηξ/2. It

does not necessarily hold that Ŝηξ/2 ⊂ B, but because the diameter of a ξ/2-ball is bounded by

ξ, around each ξ/2 ball that intersects B we can choose a ξ-ball with a centres inside B. From

the injectivity of the isometry Cτ we get the desired set S`,ζξ .

Proof of Proposition B.1. The functions

bk(z) =

d∏
j=1

cosh 2kjη
−1/2 cos kjzj

for k ∈ Nd form an orthonormal basis of H2
even(Tdη).

Furthermore,

‖bk(z)‖C0(Td) ≤
d∏
j=1

cosh 2kjη
−1/2 ≤ 2d/2e

∑
kjη.

Let us construct Ŝηξ so that a ξ/2-fattening of the subspace spanned by basis elements
{bk}∑ kj≤k∗ for some k∗ covers the Hardy space ball, and then construct a lattice of functions
inside this subspace.

If we set

k∗ = max{d+ 2 log(22+d
√
d/2πξ−2)/η, 2 + 2d/η} ≤ C5η

−1 log ξ−1,

for some positive constant C5 dependent only on d, η0), we can choose

Ŝηξ =

 ∑
∑
kj≤k∗

wkbk | wk ∈
[
−2−d/2e−

∑
kjη, 2−d/2η−

∑
kjη
]
∩ (ξ(k∗)−d/2/2)Z

 .

A crude bound on the size of this set gives that

|Ŝηξ | ≤ (24−d/2(k∗)d/2ξ−1 + 1)(k∗)d

≤ (C8ξ
−1η−d/2(log ξ−1)d/2)(C5η

−1 log ξ)d

≤ e(C9 log ξ−1+C10 log η−1)(η−1 log ξ−1)d

for positive constants (dependent only on d, η0) C8, C9, C10.

C Proof of Proposition 9.1 and Lemma 9.4

Proof of Proposition 9.1. The second equation is a simple application of Proposition 8.8.
For the first equation we can say that

ψ(z)−1 =

∫
Rd
gε(z − y)ρ(y)φ(y) dy
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and consequently,

‖ψ‖−1
ζ = inf

z∈Dζ

∣∣∣∣∫
Rd
gε(z − y)ρ(y)φ(y) dy

∣∣∣∣
= inf
x∈D,s∈[−ζ,ζ]d

∣∣∣∣∫
Rd
e(|s|2/2+is·(x−y))/εgε(x− y)ρ(y)φ(y) dy

∣∣∣∣ .
Using that φ > 0 on the real domain D and that |eiw − 1| ≤ |w| for real w, we have then that

‖ψ‖−1
ζ ≥ inf

x∈D,s∈[−ζ,ζ]d
e|s|

2/2ε

(
(Kεφ)(x)−

∣∣∣∣∫
Rd
gε(x− y)ε−1(s · (x− y))ρ(y)φ(y) dy

∣∣∣∣) .
Using that

‖gε(x)s · x‖L1(Rd,dx) ≤
√

2ε/π|s| ≤
√

2ε/π
√
dζ2 ≤

√
2dZ0/πε,

we have
‖ψ‖−1

ζ ≥ ‖Kεφ‖0 −
√

2dZ0/π‖ρ‖0‖φ‖0.
Because

‖Kεφ‖−1
0 ≤ ‖ρ−1‖0‖φ−1‖0,

our assumption on Z0 gives us the required bound.

Proof of Lemma 9.4. Consider the following forward equation on the domain D for t ∈ [0, ε]:

∂tφ
t = Lφt +∇ŵtε · ∇φt, (66)

recalling that

eŵ
t
ε = ρ−1e

1
2 t∆(Uερ). (67)

We have from Theorem 3.5 that Pmε is given by

Pεφ = Sε(mε, 0)φ(y) dy,

where the solution operator Sε(t1, t0) is a kernel operator. We can thus use PDE results to study
the functional behaviour of Pε.

We divide the operator

(I + Pε)−1 = I − Pε + (I − P2n∗
ε )−1

2n∗+1∑
n=2

(−1)nPnε , (68)

where n∗ = d(2ε−1)e, and consider in turn the norms of (I − P2n∗
ε )−1 and P2n+2

ε − P2n+1
ε .

We have from Corollary 6.2 that

sup
t
‖ log ρ+ ŵtε‖0 ≤ ‖ log ρ‖0 + C69,0,

and consequently Gaussian lower estimates on the fundamental solution from Theorem 1 of
Liskevich & Semenov (2000)1 imply that there exists a constant C41 ∈ (0, 1) depending on
L, d, C68, ‖ρ‖0,Lip log ρ, ε0 such that for all bounded non-negative functions φ,

inf S(2n∗ε, 0)φ ≥ C41‖φ‖L∞ ,
1Here as usual we use that we can extend D = (R/LZ)d to Rd in the natural way.
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where we recall that 2n∗ε ∈ [1, 1 + 2ε0]. The Sinkhorn balancing (13) makes Pε bistochastic, so
‖Pε‖0 = 1: if ‖φ‖0 = 1 and

∫
D φ dx = 0 then

P2n∗
ε φ = P2n∗

ε φ+ − P2n∗
ε φ− = (P2n∗

ε φ+ − C41)− (P2n∗
ε φ− − C41),

where φ+, φ− ≥ 0 are the positive and negative parts of φ respectively.
Since the two bracketed quantities are non-negative, we have

‖P2n∗
ε φ‖0 ≤ max

{
supP2n∗

ε φ+ − C41, supP2n∗
ε φ− − C41

}
= ‖Pεφ‖0 − C41 = 1− C41.

Thus,
‖P2n∗

ε ‖0 ≤ 1− C41 < 1

and so
‖(I − P2n∗

ε )−1‖0 ≤ C−1
41 .

On the other hand, we have the Schauder estimate from Theorem 1 of Knerr (1980) that
there exists a constant C42 depending on d, L, ε0, C68 such that for 0 < t0 < t1 < 1 + 2ε0 and
A ∈ {∆,∇},

‖ASε(t1, 0)φ−ASε(t0, 0)φ‖0 ≤ C42s
−(1+β/2)(t1 − t0)β/2‖φ‖0.

Since ŵtε is ε-periodic, we can apply these equations with the evolution of Sε (66) to say that for
t ∈ [0, 1 + ε0], ∥∥∥∥ ∂∂tSε(t+ ε, 0)φ− ∂

∂t
Sε(t, 0)φ

∥∥∥∥
0

≤ 2C42t
−(1+β/2)εβ/2‖φ‖0.

As a result,

‖ 1
2 (P2n+2

ε − 2P2n+1
ε + P2n

ε )‖ =

∥∥∥∥∥1

2

∫ (2n+1)ε

2nε

(
∂

∂t
Sε(t+ ε, 0)− ∂

∂t
Sε(t, 0)

)
dt

∥∥∥∥∥
≤ C42(2nε)−(1+β/2)ε1+β/2

= C42(2n)−(1+β/2)

Since, recalling (68),

2n∗+1∑
n=2

(−1)nPnε = 1
2 (−P2n∗+2

ε + P2
ε ) +

n∗∑
n=1

1
2 (P2n+2

ε − 2P2n+1
ε + P2n

ε ),

we have ∥∥∥∥∥
2n∗+1∑
n=2

(−1)nPnε

∥∥∥∥∥
0

≤ 1 + C422−(1+β/2)(1 + 2/β)

and so
‖(I + Pε)−1‖0 ≤ 2 + C−1
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(
1 + C422−(1+β/2)(1 + 2/β)

)
=: C40

as required.
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