Linear response in higher dimensions and mixing of Cantor sets

Caroline Wormell

CNRS, Sorbonne Université

7th December, 2021

 $f: \mathcal{M} \to \mathcal{M}$ chaotic, topologically mixing.

Suppose we have initial guess at state of system: measure μ on \mathcal{M} , and want to predict observable $A:\mathcal{M}\to\mathbb{R}$. What happens in the long term:

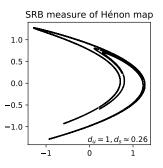
$$\int_{\mathcal{M}} A \circ f^n \, \mathrm{d}\mu \xrightarrow{n \to \infty} ??$$

 $f: \mathcal{M} \to \mathcal{M}$ chaotic, topologically mixing.

Suppose we have initial guess at state of system: measure μ on \mathcal{M} , and want to predict observable $A:\mathcal{M}\to\mathbb{R}$. What happens in the long term:

$$\int_{\mathcal{M}} A \circ f^n \, \mathrm{d} \mu \xrightarrow{n \to \infty} \int_{\mathcal{M}} A \, \mathrm{d}?$$

Most likely result: Sinai-Ruelle-Bowen (SRB) measure ρ_f and d_u positive Lyapunov exponents.



supp ρ_f is a union of d_u -dimensional unstable manifolds, on which conditional measure of ρ_f is abs. cts \implies dim $\rho_f \geq d_u$. Dimension of attractor cross-section $d_s = \dim \rho_f - d_u$.

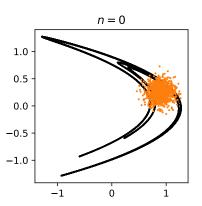
Why are these very important objects in chaotic dynamics?

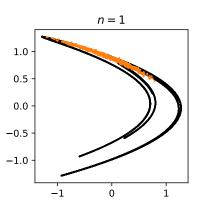
Why are these very important objects in chaotic dynamics?

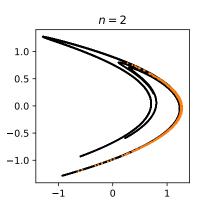
For many maps and regular (e.g. C^1) A, if μ is any absolutely continuous measure then future expectations of A converge exponentially fast to that of ρ_f

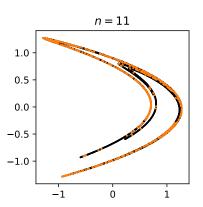
$$\frac{1}{|\mu|} \int_{\mathcal{M}} A \circ f^n d\mu = \int A d\rho_f + \mathcal{O}\left(e^{-cn}\right)$$

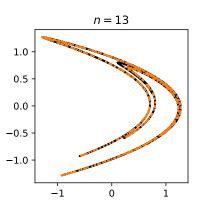
Thus, pushforward $\frac{1}{|\mu|}f_*^n\mu-\rho=\mathcal{O}(e^{-cn})$ in some Banach space dual.

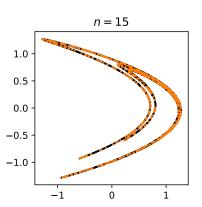


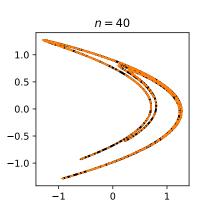












This talk:

- 1. What larger classes of initial measures μ mix to ρ_f (exponentially)?
- 2. What might this tell us about the regularity of $f \mapsto \rho_f$? (= linear response problem)

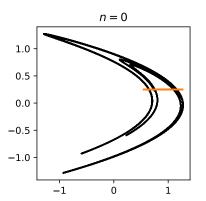
Intuition: suppose μ is initial guess of system state, and $A \in \mathcal{B}$ is observable, then forecasts converge:

$$\frac{1}{|\mu|} \int_{\mathcal{M}} A \circ f^{n} d\mu = \int A d\rho_{f} + \mathcal{O}\left(e^{-cn} ||A||_{\mathcal{B}}\right)$$

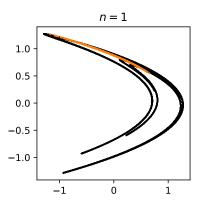
Equivalently, push-forward measure $f_*^n \mu \to |\mu| \rho_f$ in \mathcal{B}^* . Transfer operator results (e.g. Gouëzel and Liverani '07, Baladi and Tsuji '07):

"If μ is conditionally absolutely continuous along $\geq d_u$ -dimensional manifolds transverse to stable manifolds, with some regularity, then it exponentially mixes to ρ_f ."

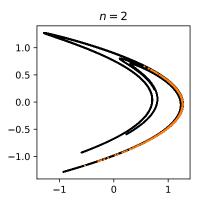
Example 1: you could know some coordinates beforehand:



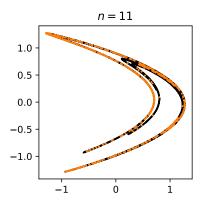
Example 1: you could know some coordinates beforehand:



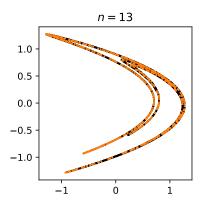
Example 1: you could know some coordinates beforehand:



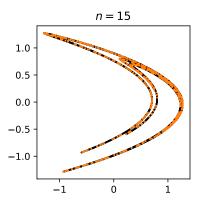
Example 1: you could know some coordinates beforehand:



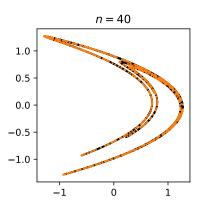
Example 1: you could know some coordinates beforehand:



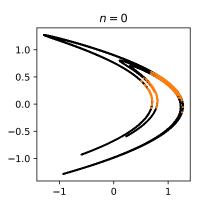
Example 1: you could know some coordinates beforehand:



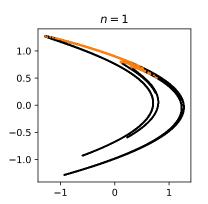
Example 1: you could know some coordinates beforehand:



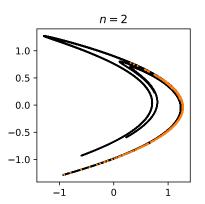
$$\int A \circ f^n B d\rho_f - \int A d\rho_f \int B d\rho_f = \mathcal{O}(e^{-cn} ||A|| ||B||)$$



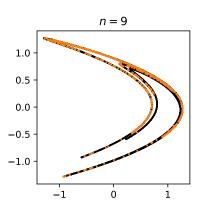
$$\int A \circ f^n B d\rho_f - \int A d\rho_f \int B d\rho_f = \mathcal{O}(e^{-cn} ||A|| ||B||)$$



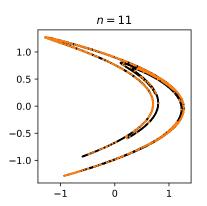
$$\int A \circ f^n B d\rho_f - \int A d\rho_f \int B d\rho_f = \mathcal{O}(e^{-cn} ||A|| ||B||)$$



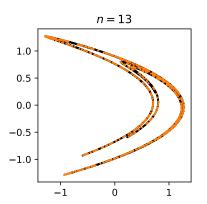
$$\int A \circ f^n B d\rho_f - \int A d\rho_f \int B d\rho_f = \mathcal{O}(e^{-cn} ||A|| ||B||)$$



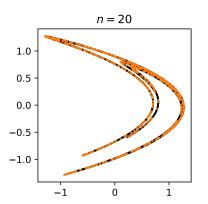
$$\int A \circ f^n B d\rho_f - \int A d\rho_f \int B d\rho_f = \mathcal{O}(e^{-cn} ||A|| ||B||)$$



$$\int A \circ f^n B d\rho_f - \int A d\rho_f \int B d\rho_f = \mathcal{O}(e^{-cn} ||A|| ||B||)$$



$$\int A \circ f^n B d\rho_f - \int A d\rho_f \int B d\rho_f = \mathcal{O}(e^{-cn} ||A|| ||B||)$$



Transfer operator theory also usually gives second order mixing:

$$\int A \circ f^{m+n} B \circ f^m d\mu_f - \int A d\rho_f \int B \circ f^m d\mu_f = \mathcal{O}(e^{-cn} ||A|| ||B||)$$
 uniformly in m .

But what if μ had less than d_u dimensions of regularity?

But what if μ had less than d_u dimensions of regularity? Sometimes this doesn't work:

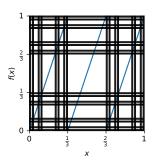
- 1. μ could be a different f-invariant measure (uncountably many)
- 2. The support of μ could be an invariant set.
- 3. μ could be constructed to be nasty.

But what if μ had less than d_u dimensions of regularity? Sometimes this doesn't work:

- 1. μ could be a different f-invariant measure (uncountably many)
- 2. The support of μ could be an invariant set.
- 3. μ could be constructed to be nasty.

Example of #2:

- $f = 3x \mod 1$ tripling map, $\rho_f = \text{Leb}$
- ▶ supp $\mu \subseteq C$ classical $\frac{1}{3}$ -Cantor set.
- ightharpoonup C is f-invariant and dim C < 1.



Results

But what if you considered nice (but possibly still fractal) measures that don't obviously fail? Say, an invariant measure of a different map g.

Results

But what if you considered nice (but possibly still fractal) measures that don't obviously fail? Say, an invariant measure of a different map g.

Recent work on "Fourier dimension" (Bourgain and others):

Theorem (Sahlsten and Stevens, '20)

If $f=kx \mod 1$, and μ is a Gibbs measure of a "totally non-linear" C^1 Markov expanding map g with Lipschitz potential, exponentially μ mixes to ρ_f .

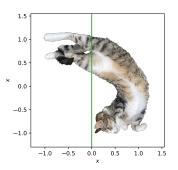
Numerically appears to hold for other f...

What if μ was a regular *cross-section* of the SRB measure ρ_f ?

What if μ was a regular *cross-section* of the SRB measure ρ_f ? Let's try on the Lozi map

$$f(x,y) = (1 - a|x| + by, x), \ 0 < b < a - 1$$

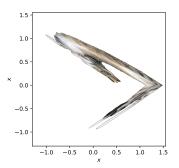
Piecewise hyperbolic:



What if μ was a regular *cross-section* of the SRB measure ρ_f ? Let's try on the Lozi map

$$f(x,y) = (1 - a|x| + by, x), \ 0 < b < a - 1$$

Piecewise hyperbolic:

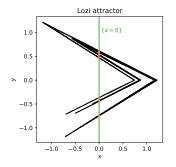


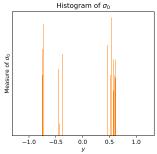
Dimensions: $d_u = 1$, $d_s \in (0,1)$.

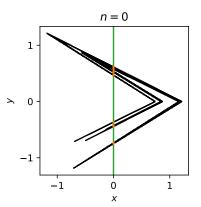
Slice measure:

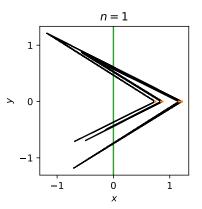
 $\sigma_c := \text{conditional measure of } \rho_f \text{ on } \{x = c\}.$

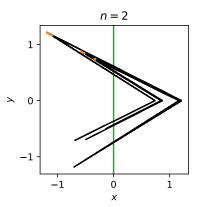
Generically dim $\sigma_c = d_s < 1$.



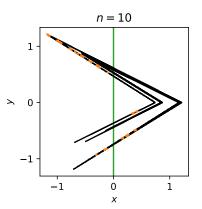


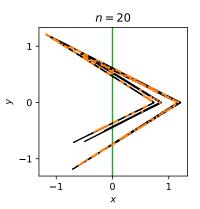


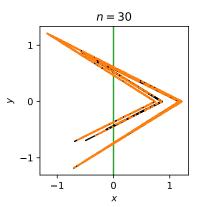


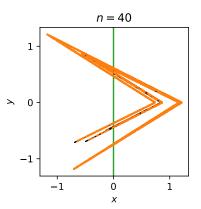








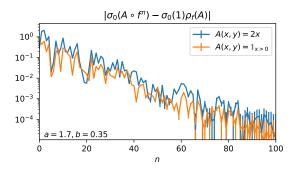




Push-forwards of σ_0 numerically difficult to observe accurately! However:

Theorem

The following chart was made with an accurate Monte Carlo sample of σ_0 :



Q: How do you get a good sample from $f_*^n \sigma_c$?

Q: How do you get a good sample from $f_*^n \sigma_c$? A: get a very good sample from σ_c .

- Lozi map is affine, so at any point p the local unstable manifold $W^u_{loc}(p)$ is an interval \implies easy to compute
- ▶ We can sample from σ_c via $\{W^u_{loc}(f^n(p))\} \cap \{x = c\}$ for some $p \sim \rho_f$.
- Of course, doing this in a way that excludes machine error requires more tricks...

Q: What is the regularity of $f \mapsto \rho_f$?

More specific Q: if

$$f_{\varepsilon}(x) = f(x) + \varepsilon X(f(x)) + o(\varepsilon),$$

what is regularity of the "response" $\varepsilon \mapsto \int A \, \mathrm{d} \rho_{f_{\varepsilon}}$?

More specific Q: if

$$f_{\varepsilon}(x) = f(x) + \varepsilon X(f(x)) + o(\varepsilon),$$

what is regularity of the "response" $\varepsilon \mapsto \int A \,\mathrm{d} \rho_{f_\varepsilon}$? If it is C^1 , then \exists a formula to compute the derivative at $\varepsilon = 0$ from f dynamics.

More specific Q: if

$$f_{\varepsilon}(x) = f(x) + \varepsilon X(f(x)) + o(\varepsilon),$$

what is regularity of the "response" $\varepsilon \mapsto \int A \,\mathrm{d} \rho_{f_\varepsilon}$? If it is C^1 , then \exists a formula to compute the derivative at $\varepsilon = 0$ from f dynamics.

easy prediction of statistical response to dynamical perturbations

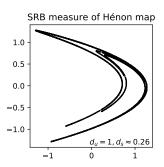
When is the response differentiable for generic perturbations?

- ✓ Stochastic systems (Hänggi '78, Hairer and Majda '10)
- ✓ Smooth(!) hyperbolic systems (Ruelle '97)
- imes Logistic maps: $C^{1/2-\delta}$ at best (Baladi and Smania '12, '14)
- \times 1D piecewise expanding maps, e.g. f(x) = 1 a|x|: $C^{1-\delta}$ at best (Mazzalena '07, Baladi '07)
- ? Piecewise hyperbolic diffeomorphisms, e.g. Lozi map
- ? Non-hyperbolic dissipative diffeomorphisms e.g. systems of real interest

Conjecture (Ruelle '19)

Generic non-hyperbolic smooth diffeomorphisms have at least $C^{d_s+1/2-\delta}$ response (formally).

NB: for logistic map, $d_s = \dim \rho_f - d_u = 0$ so $C^{1/2-\delta}$ response.

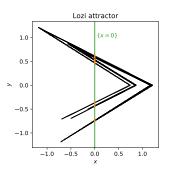


Very hard to impossible rigorous setting. Need simpler example. . .

Lozi map

Theorem

Lozi maps with second-order mixing of σ_0 to ρ_f formally have a linear (C^1) response.



Lozi map

Why?

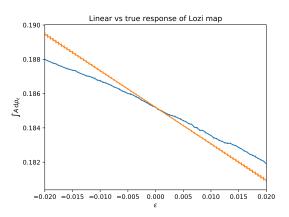
Linear response is a correlation with derivative of the measure:

$$\left. \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int A \, \mathrm{d}\rho_{f_\varepsilon} \right|_{\varepsilon=0} = -\sum_{n=0}^{\infty} \int A \circ f^n \, \nabla \cdot (X \, \mathrm{d}\rho)$$

- Possible failure points are where measure is not regular enough in unstable direction (e.g. jumps in density)
- Measure irregularities are localised to the orbit of singular points in map
- ▶ Singular set of the Lozi map is $\{x = 0\}$.

Lozi map

Following Ruelle's work, expect $C^{d_s+1-\delta}$ response, i.e. low-order:



Conclusion

- Mixing of non-smooth measures to SRB measure an interesting phenomenon/problem
- Results obtained should generalise to other piecewise hyperbolic systems
- Will be key to understanding existence of linear response in higher dimensions