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Statistical properties of chaotic systems

Consider a chaotic dynamical system

T = f(x), x(0) = xo.

Such systems typically have a physical measure L, i.e., for any
observable A and almost any initial value x,
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Statistical properties of chaotic systems

Consider a family of chaotic dynamical systems

Te = f(xe,€), x(0) = x0.

Such systems typically have physical measures [, i.e., for any
observable A and almost any initial value x,
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Statistical properties of chaotic systems

Consider a family of chaotic dynamical systems

Te = f(xe,€), x(0) = x0.

Such systems typically have physical measures [, i.e., for any
observable A and almost any initial value x,
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How does (A). vary with €¢?
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Linear response theory

Hypothesis: Maybe (for small epsilon) differentiably:
(A)e ~ (A)o +€(A)y, ek 1
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Linear response theory

Hypothesis: Maybe (for small epsilon) differentiably:
(A)e m (A)g +€(A)g, ek 1

Magic: Both coefficients can be calculated using only information
about the statistics of the unperturbed system (e = 0) via formulae
such as the fluctuation-dissipation theorem:

(A = _/ VG 4o, d
0 M 0

This has met with qualified success in climate science (work of A.
Maijda, A. Gritsun, V. Lucarini, Cooper & Haynes 13...)
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Linear response theory - logistic map

But: chaotic maps may not have linear response.
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Linear response theory - logistic map

But: chaotic maps may not have linear response.

Case in point: the logistic map
Tni1 = (3.8 4+ €)xp (1 — xp)
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Linear response theory - logistic map

But: chaotic maps may not have linear response.

Case in point: the logistic map

Tni1 = (3.8 4+ €)xp (1 — xp)
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Linear response - time series

Physical measures are typically estimated by running long time
series (i.e. Monte Carlo).
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Linear response - time series

Physical measures are typically estimated by running long time
series (i.e. Monte Carlo).
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Perhaps it’s a case of not enough data?
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Test for linear response

How to see (statistically) if you have linear response:

Chaotic systems often obey a central limit theorem:

TIRE I VRPN o(A), .
Ave= g | Al = () + 2, €~ N(O.1)
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Test for linear response

How to see (statistically) if you have linear response:

Chaotic systems often obey a central limit theorem:

A o i N . . oc(A)
AN,e - NA A( e(t)>dt — <A>e -+ \/N

We run the system for different values of the parameter epsilon,
and try and test the model for fit:

_ o.. (A
ANne, = ap + ar€; + (4)
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Effect of data size
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Effect of perturbation size
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Conclusions from the logistic map

~ It takes a lot of data (NM = 50/€,,4.) to reliably see the
absence of linear response for global observables

- Using larger perturbations (i.e. bigger epsilon) makes this easier
to see

- It is possible to reduce this using observables with localised
support, but these require prior knowledge of the structure of
the system
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What about approximate linear fits?
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What about approximate linear fits?

Trying to use fluctuation-dissipation theorem where linear response
theoretically fails gives poorly-conditioned, meaningless results (for
logistic map).
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Further directions for research

- Application of linear response test to practically relevant
systems

— Investigation of fluctuation-dissipation theorem

— Possible paths to linear response in complex systems (e.g. noise
limits, strong versions of Gavalotti-Cohen hypothesis)
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