Emergence of linear response at macroscopic scales

Introduction

Consider a smooth family of chaotic systems
x, = G(x,_;, €), with physical measures ;“ encoding the
system’s equilibrium statistics.

A system has linear response if for “nice” observables @,

FE[D] := JCD dué

is differentiable with respect to £. Derivatives can be
calculated using linear response theory (LRT).

LRT has been successfully
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What determines the existence of linear response

in complex systems at large spatial scales?

Model

We consider an inhomogeneous ensemble of M > 1

chaotic subsystems q(j), with random system parameters
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We observe a mean field @.
We consider two different couplings:
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where ;%%¢ are the time-dependent physical . for d . dimensional dynamical system.
measures of cocycle g, = f(q,;d,, a, €) (1-€. pre-set for dynamics) g — low-dimensional bifurcation theory works
n n> “'n> -
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So response of @ is, to first order in M, the average
response of the microscopic subsystems.

Suppose the microscopic variables do not have linear
response. If the parameter distribution v is discrete,
neither does @, but however if the microscopic variables

are appropriately heterogeneous (v smooth), this may
induce linear response in the macroscopic variables:

e If f(-;d,a,e) =f(-;d, e+ Ka) then mean field ® has
linear response irrespective of f.

« If fis unimodal (e.g. logistic) then via a conjecture of

Avila et al., for at least d = 0 the mean field ® has
linear response (below)
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defines a stochastic dynamical system via the {, process.
It is appropriately smooth if the microscopic variables obey

LRT (which £, induces). Thus, self-coupled finite

ensembles have linear response, independent of the 0-10 L
microscopic variables. \_‘ S~
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Emergence of linear response at macroscopic scales

Introduction

Consider a smooth family of chaotic systems x, = G(x,_;, €), with
physical measures ;¢ encoding the system’s equilibrium statistics.

The system has a linear response if for “nice” observables ¥,

(W = J“I’ du®

is differentiable with respect to €. Derivatives can be calculated using

linear response theory (LRT).
LRT has been applied to climate models with

some success, /’particularly at macroscopic 0.66 V?h,/\\
scales (cite survey?). £)

=
However, some systems exhibit a failure of LRT 0
(e.g. Chekroun et al. ’14), and recently Baladi o T
and others proved that logistic maps have no | -

linear response (see right).

What determines the existence of linear response
at large scales in complex systems?

Two “simple” complex systems
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Macroscopic reduction

Uncoupled system has reduction
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where

Fd,_,d _»,..;€) = J]¢ du®€ dv(a)

and ,ur‘;l’“’e are the time-dependent physical measures of the cocycle

qiz+1 — f(Qrp dn? a, 8)’

G(x,e) =ex(l — x)

Path 1: “collective” LRT

Consider the first model and for simplicity that d, = 0. From (1),

=[P = ﬂ d(q) du** dv(a)

O(M_l/z).

So the response of @ is, to first order, the average response of the
microscopic subsystems.

o If the microscopic subsystems have LR then so does ®; but,
e If f(-;d,a,e) =f(-;d,e+ Ka) then ® has LR irrespective of {.

o If fis unimodal (e.g. logistic) then via a conjecture of Avila and
others, the mean field @ has linear response (see figure below)
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Path 2: emergeni noise

For M < oo, equation (2) defines a stochastic dynamical system due
to the ¢, process. It is appropriately smooth if the microscopic
variables obey LRT (which ¢, inducess). Thus, it has linear response.

This may break down as M — oo, e.g. by dense bifurcations:
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Anti-Path: thermodynamic limit

In the self-coupled case, as M — oo we have deterministic dynamics:
(I)n — F((I)n—l’ (Dn_z, oo 8).

Microscopic mixing means we can ignore @, _, for [ large. With
collective LRT this is a smooth low-dimensional dynamical system.

With Poltergeist. jl we used transfer operator methods to very

accurately simulate the dynamics of I for uniformly hyperbolic

microscopic variables. Find non-hyperbolic chaos (confirmed by
numerically finding homoclinic tangencies).
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I’m giving a talk on this here, 11am Tuesday



