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Linear response theory

Consider a smooth family of deterministic dynamical systems
xn = T ε(xn−1), which are mixing with physical invariant measures
µε.:

Eε[Ψ] :=

∫
Ψ(x) dµε(x)

Linear response theory (LRT): What is d
dεµ

εEε[Ψ]?
(e.g. for Taylor approximations)

. . . supposing Eε[Ψ] is differentiable



LRT in practice

The application of linear response theory to climate systems has
met with some success:
• Toy models: Majda et al ’07, ’10, Lucarini & Sarno ’11
• Barotropic models: Bell ’80, Gritsun & Dymnikov ’99,

Abramov & Majda ’09
• Quasi-geostrophic models: Dymnikov & Gritsun ’01
• Atmospheric models: North et al ’04, Cionni et al ’04, work of

Gritsun and others ’02, ’07, ’10, Ring & Plumb ’08
• Coupled climate models: Langen & Alexeev ’05, Kirk &

Davidoff ’09, Fuchs et al ’14, Ragone et al ‘15



LRT in practice

However:
• Rough responses are known in

atmospheric and ocean dynamics
(e.g. Chekroun et al. ’14)
• The failure of linear response needs

very long time series to be visible
(Gottwald, W. & Wouters ’17)
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LRT in theory
Analytically, we know LRT works in
• Statistical mechanics: Kubo ’66
• Stochastic dynamical systems: Hänggi ’78, Hairer & Majda ’10
• Axiom A (uniformly hyperbolic dissipative chaos): Ruelle ’97-8
• Other dissipative systems. . . ?

Baladi and others (’08, ’10, ’14, ’15) proved there is no linear
response for quadratic maps, even Whitney differentiability.
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The question
In this talk we will address the following question:

When and why does linear response occur (for all prac-
tical purposes) at macroscopic scales in high-dimensional
systems?
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The model
We study simple complex systems:
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We will derive reductions for mean-field dynamics and discuss (very
rich) LRT properties.



The model
We study slightly more complex complex systems:
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We will derive reductions for mean-field dynamics and discuss (very
rich) LRT properties.
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We will derive reductions for mean-field dynamics and discuss (very
rich) LRT properties.

1

macroscopic observables
microscopic subsystem uncoupled coupled

f satisfies LRT finite M 3 3
M ! 1 3 O

f violates LRT with smooth d⌫
da

finite M (3) (3)
M ! 1 3 O

f violates LRT with non-smooth d⌫
da

finite M 7 (3)
M ! 1 7 7



Uncoupled case

System parameters: a(j), j = 1, . . . ,M sampled
from measure ν
Dynamics:

q
(j)
n = f (q

(j)
n−1; a(j), ε), j = 1, . . . ,M

Observable:

Ψn =
1
M

M∑
j=1

ψ(q
(j)
n )
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Each subsystem q(j) evolves independently: suppose they have
physical measures µa

(j),ε and are mixing.



Uncoupled case: expectations

Two (nested) ways to take expectations:

relevant for LRT

• Over dynamics, i.e. initial conditions: Eε[ · · · ]

• Over dynamical systems, i.e. selection of parameters a(j) (if
relevant): 〈 Eε[ ··· ] 〉



LRT of mean-field Ψ

We are interested in behaviour with respect to ε of

EεΨ =
1
M

M∑
j=1

Eε[ψ(q(j))]

The q(j) evolve independently of each other so at statistical
equilibrium,

Eε[ψ(q(j))] =

∫
ψ(q)dµa

(j),ε(q)

only depends on a(j)



LRT of mean-field Ψ

Because the a(j) are randomly selected, a CLT in 〈 · 〉 gives

EεΨ =
1
M

M∑
j=1

Eε[ψ(q(j))] = Ψ̄ε +
1√
M
ηε + o(1/

√
M)

where ηε is a mean-zero Gaussian process in ε, and

Ψ̄ε = 〈Eε[ψ(q)]〉 =

∫∫
ψ(q) dµa,ε(q) dν(a)

So response of mean-field Ψ is Ψ̄ε plus small correction for finite
ensemble size.



LRT of Ψ̄ε

Ψ̄ε = 〈Eε[ψ(q)]〉 =

∫∫
ψ(q) dµa,ε(q) dν(a)

• Clearly if microscopic subsystems satisfy LRT then so does Ψ̄ε.
• On the other hand if the microscopic subsystems violate LRT

and ν is discrete (e.g. ν = δa0), then Ψ̄ε will not have LRT.



LRT of Ψ̄ε

If ν is smooth (e.g. dν
da ∈ BV ), then averaging over dν(a) can give

“collective” linear response of microscopic systems that may violate
LRT:
• Easy case: If f ( · ; a, ε) = f ( · ; a + Kε):

dΨ̄ε

dε
=

∫
d
dε

∫
ψ(q) dµa+ε(q) dν(a)

=

∫
d
da

∫
ψ(q) dµa+ε(q) dν(a)

= −
∫∫

ψ(q) dµa+ε(q) d
(

dν
da

)
=⇒ LRT holds



LRT of Ψ̄ε

• If f ( · ; a, ε) is a family of (analytic) unimodal maps:
• These maps obey LRT along topological conjugacy classes

(Ruelle ’09);
• Avila et al (’03) conjectured that topological conjugacy classes

of these maps have a uniformly analytic codimension-one
lamination.

This may imply Ψ̄ε has linear response.
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LRT of Ψ̄ε

Smooth family of unimodal maps:

f (q; a, ε) = (a + 4εq(1− q))q(1− q),

ν ∼ Cosine(3.75, 0.05) 3.65 3.75 3.85

a
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LRT of ηε

What about finite M correction ηε?
Suppose the microscopic variables violate LRT with Cα (α < 1)
response but Ψ̄ε satisfies LRT. Then〈

(ηε − ηε0)2〉 =
〈

(Eε[ψ(q(j))]− Eε0 [ψ(q(j))])2
〉
− (Ψ̄ε − Ψ̄ε0)2

= O(|ε− ε0|2α)−O(|ε− ε0|2) = O(|ε− ε0|α)2.

Hence ηε is Cα a.s., so violates LRT.



LRT of ηε

Thus, for finite M we only get “approximate” LRT (when
microscopic subunits do not have LRT).
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Macroscopic reduction

What about the dynamics of Ψn?
The q(j)s are independent of each other, so for any n

Ψn =
1
M

M∑
j=1

ψ(q
(j)
n )

is a sum of independent random variables.
Thus

Ψn = EεΨ +
1√
M
ζn + o(1/

√
M)

where ζn, n ∈ N are mean-zero Gaussian random variables.



Macroscopic reduction

When M � 1, ζ appears to converge to a stationary Gaussian
process.
The autocorrelation function is given by the microscopic
subsystems:

Cov[ζm, ζn] = 〈Cov[ψ(qm), ψ(qn)]〉

so ζ has decay of correlations and can be approximated by e.g. an
AR process.

Side note: as with mean-fields, variability observables such as
M(Ψn − Eε[Ψ])2 also have (approximate) LRT.



Non-coupling system conclusions

• Response of mean-field is at least as smooth as that of
microscopic dynamics
• Possible to get LRT (for all intents and purposes) at

macroscopic level with microscopic dynamics that violate LRT
• Mean-field dynamics are O(M−1/2) Gaussian fluctuations

about expectation value



Mean-field coupled case

System parameters: a(j), j = 1, . . . ,M sampled
from measure ν
Dynamics:

q
(j)
n = f (q

(j)
n−1; Φn−1, a

(j), ε), j = 1, . . . ,M

Φn =
1
M

M∑
j=1

φ(q
(j)
n )

Observable:

Ψn =
1
M

M∑
j=1

ψ(q
(j)
n )
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Externally-coupled system
System parameters: a(j), j = 1, . . . ,M sampled
from measure ν
External driver: dn
Dynamics:

q
(j)
n = f (q

(j)
n−1; dn−1, a

(j), ε), j = 1, . . . ,M

Φn =
1
M

M∑
j=1

φ(q
(j)
n )

Observable:

Ψn =
1
M

M∑
j=1

ψ(q
(j)
n )
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Suppose q(j) have time-dependent physical measures µd ,a
(j),ε

n with
decay of correlations.



Externally-coupled system

We can apply the same CLT ideas, so e.g.

〈Eε[Φn|d ]〉 =

∫∫
φ(q) dµd ,a

(j),ε
n (q) dν(a)

which only depends on (dm)m<n.
We have

Φn = 〈Eε[Φn|d ]〉+
1√
M
η̃d ,εn +

1√
M
ζ̃dn + o(1/

√
M)

where the process ζ̃ is now non-stationary, and η̃ε depends on time.



Macroscopic reduction of coupled system

Ansatz: if M � 1, the coupled system can be approximated by
setting dn ≡ Φn.
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Macroscopic reduction of coupled system

Ansatz: if M � 1, the coupled system can be approximated by
setting dn ≡ Φn.
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Macroscopic reduction of coupled system

Ansatz: if M � 1, the coupled system can be approximated by
setting dn ≡ Φn.
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Macroscopic reduction of coupled system

This gives the macroscopic reduction:

Φn = 〈Eε[Φn|Φ]〉+
1√
M
η̃Φ,ε
n +

1√
M
ζ̃Φ
n + o(1/

√
M)

=: F (Φn−1,Φn−2, . . . ; ε)

usually smaller than ζ̃

self-generated noise



LRT of coupled system: finite M

The macroscopic reduction

Φn = F (Φn−1,Φn−2, . . . ; ε) +
1√
M
η̃Φ,ε
n +

1√
M
ζ̃Φ
n + o(1/

√
M)

Ψn = G (Φn−1,Φn−2, . . . ; ε) +
1√
M
ηΦ,ε
n +

1√
M
ζΦ
n + o(1/

√
M)

defines a stochastic dynamical system.
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Modulo η’s:
• The noise ζ̃Ψ generates (annealed) LRT in the microscopic

particles, so this noisy system is ∼smooth in Φ and ε.
• So Φ obeys LRT for finite M.
• Thus so does Ψ.



LRT of coupled system: finite M

The macroscopic reduction

Φn = F (Φn−1,Φn−2, . . . ; ε) +
1√
M
η̃Φ,ε
n +

1√
M
ζ̃Φ
n + o(1/

√
M)

Ψn = G (Φn−1,Φn−2, . . . ; ε) +
1√
M
ηΦ,ε
n +

1√
M
ζΦ
n + o(1/

√
M)

defines a stochastic dynamical system.
Modulo η’s:
• The noise ζ̃Ψ generates (annealed) LRT in the microscopic

particles, so this noisy system is ∼smooth in Φ and ε.
• So Φ obeys LRT for finite M.
• Thus so does Ψ.



LRT of coupled system: finite M

LRT for unimodal microscopic components, ν = 1
3(δa1 + δa2 + δa3):
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LRT of coupled system: finite M

LRT for unimodal microscopic components, dν
dx ∈ C 3:
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Thermodynamic limit

As M →∞ we have macroscopic reduction

Φn = F (Φn−1,Φn−2, . . . ; ε)

Ψn = G (Φn−1,Φn−2, . . . ; ε)

defines a (smooth) stochastic dynamical system.
In particular external forcing washes out over time because of
microscopic mixing, so

Φn ≈ F (Φn−1,Φn−2, . . . ,Φn−K ; ε),

i.e. emergent dynamics of Φn are low-dimensional.



Thermodynamic limit

If dynamics converges to equilibrium Φn ≡ Φ̄ε we have

Φ̄ε = F (Φ̄ε, Φ̄ε, . . . ; ε) := F0(Φ̄ε; ε)

which is a smooth function if the microscopic subsystems have
“collective” LRT. Then,

dΦ̄ε

dε
=

(
1− ∂F0

∂Φ̄ε

)−1 ∂F0

∂ε

(+ stability) and hence Φ has LRT.



Thermodynamic limit
For unimodal microscopic component example, dν

dx ∈ C 3, we see
saddle-node bifurcation:
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What are the other possible macroscopic dynamics and do they
obey LRT?



Thermodynamic limit

• LRT in thermodynamic limit is difficult to study accurately
using naive methods: need both long time series and very large
microscopic ensembles.
• However, suppose a(j) ≡ a0. We can write system in terms of

measures µd ,εn and Perron-Frobenius operators L:

µΦ,ε
n = Lf (·;Φn−1,ε)µ

d ,ε
n−1,

Φn =

∫
φ(q) dµΦ,ε

n (q).

• For uniformly expanding f these equations can be very
efficiently approximated with spectral methods (W. ’19).



Macroscopic dynamics in thermo. limit

Consider a mean-field-coupled system

q
(j)
n = g(q

(j)
n−1; εΦn−1)

Φn =
1
M

M∑
j=1

φ(q
(j)
n ).

In a few lines of code, the limiting
macroscopic dynamics can be simulated
very accurately using Poltergeist.jl.



Macroscopic dynamics in thermo. limit

For large ε we see period doubling bifurcation to chaos:



Macroscopic dynamics in thermo. limit

The attracting Φ dynamics look unimodal:



LRT in thermodynamic limit
We have breakdown of LRT in the thermodynamic limit:
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We got this from hyperbolic microscopic components!



Macroscopic dynamics in thermo. limit

Side question: are the structure of the dynamics in the
thermodynamic limit hyperbolic?
Answer: No. There are homoclinic tangencies.

How do we know? Continuation, making use of Poltergeist.jl.



Macroscopic dynamics in thermo. limit



Macroscopic dynamics in thermo. limit



Macroscopic dynamics in thermo. limit



Conclusions

Various mechanisms by which linear response may emerge and/or
break down in large coupled chaotic systems:
• Inhomogeneous collections of microscopic subsystems may

have a differentiable average response despite individually
violating LRT
• Self-generated noise can induce LRT in large but finite systems
• In thermodynamic limit LRT depends on collective microscopic

LRT and structure of macroscopic dynamics
• Macroscopic dynamics may be non-hyperbolic chaos, violate

LRT



Further directions

• Study of networks beyond big mean-field couplings
• More rigorous study of some of these phenomena would be

very interesting.



Further details

Wormell, C.L. and Gottwald, G.A., 2019. Linear response
for macroscopic observables in high-dimensional systems.
arXiv:1907.13490.



Aside on periodic windows

Unimodal maps have periodic dynamics on a dense (but not full
measure) parameter set—i.e., non-mixing.
To keep things simple, we avoid this by adding “hidden” dynamics
r

(j)
n ∈ [0, 1]:

f (q, r ; a, ε) =

{
(f̃ (q; a, ε), 2r), r ≤ 1/2
(q, 2r − 1), r > 1/2.

This makes the unimodal q(j) dynamics mixing while retaining the
same invariant measures.

(N.B. at statistical equilibrium, {rn ≥ 1/2}n∈N are i.i.d. Bernoulli.)



“Mixing”

If dynamical system xn = f (xn−1) is mixing with respect to measure
µ then for all w ∈ L2(µ) with E[w ] = 1,

E[ψ(xn)w(x0)] =

∫
ψ(xn)w(x0) dµ(x0)

n→∞−−−→ E[ψ]

More generally, are going to assume that if µ̃ is a “nice” measure,∫
ψ(xn) dµ̃(x0)

n→∞−−−→ E[ψ]


