Numerical methods in (non-hyperbolic) chaos

Part 4: Koopman and transfer operator discretisations II

Caroline Wormell, Sorbonne Université/CNRS

Yesterday: Galerkin approximation is a common means of approximation. It is just fancy least squares.

A very simple, classic example is trying to do a linear approximation:

In [2]:

```
u(x) = 2sin(2x)
a = 0.2; b = 2
plot(0:0.01:1,u.(0:0.01:1),label="\$u\$")
plot([0,1],a .+ b*[0,1],c="C1",label="\$ y = a + bx\$")
legend();
```


On a computer (or from data) though, we might only have a finite number of points $\{x_n\}_{n=1,...,N}$ with which to do this:

In [3]:

```
x = rand(100)
ux = u.(x)
scatter(x,ux,label="\$u\$ data points")
plot([0,1],a .+ b*[0,1],c="C1",label="\$ y = a + bx\$, by eye")
legend();
```


How to best choose parameters a, b? Maybe try to minimise the mean squared error:

$$rac{1}{N}\sum_{n=0}^{N-1}\left(u(x_n)-(a+bx_n)
ight)^2$$

If we write

$$\Psi_0=egin{pmatrix} 1&x_1\ 1&x_2\dots&dots\ 1&dots\end{pmatrix} \ ec{1}_1&dots$$

you may remember from statistics that the best choice of a, b are

$$egin{pmatrix} a \ b \ \end{pmatrix} = (\Psi_0^*\Psi_0)^{-1}\Psi_0^* egin{pmatrix} u_1 \ u_2 \ dots \ u_n \end{pmatrix}$$

In [4]:	<pre>Psi0 = [ones(100) x] ab_vector = (Psi0' * Psi0) \ Psi0' * ux a,b = ab_vector[1], ab_vector[2]</pre>
Out[4]:	(0.4451948291899738, 1.8887215843244562)
In [5]:	<pre>scatter(x,ux,label="\\$u\\$ data points") plot([0,1],ab_vector[1] .+ ab_vector[2]*[0,1],c="C1",label="\\$ y = a + bx\\$, best fit") legend();</pre>

Let's now imagine u is some linear transformation of a function in our dictionary $\{1, x\}$:

$$u=lpha+eta f(x)$$

Out[6]:

(0.0, 1.045342796476386)

We could write

$$u=\Psi_1\left(egin{a}lpha\eta
ight)$$

Then our best linear approximation in our dictionary is given by coefficients

$$igg(egin{a}{a}{b} igg) = (\Psi_0^* \Psi_0)^{-1} \Psi_0^* \Psi_1 igg(eta \ eta igg).$$

We could write

$$u=\Psi_1\left(egin{a}lpha\eta
ight)$$

Then our best linear approximation in our dictionary is given by coefficients

$$igg(egin{a}{b}{b} igg) = (\Psi_0^*\Psi_0)^{-1}\Psi_0^*\Psi_1 igg(egin{array}{c}{lpha}{eta} igg)$$

This series of Ψ 's is a 2×2 matrix encoding the action of composition by f (i.e. the Koopman operator of the doubling map), approximated in this basis $\{1,x\}$

In [7]:

Psil = [ones(100) f.(x)] Koop = (Psi0' * Psi0) \ (Psi0' * Psi1)

Out[7]: In [8]:

$2\sqrt{2}$ Matrix (Elastell)

using LinearAlgebra
spectrumplot(0.5.^(0:100),s=15,c="grey")
spectrumplot(eigvals(Koop),s=20);

The second eigenvalue is accurately captured!

With these linear functions $\{1, x\}$ we are doing **Dynamical Mode Decomposition**.

For many high-dimensional systems, it works reasonably well.

In in our case, it works because because $\{1, x\}$ is a closed subspace of the Koopman operator's $L^2(dx)$ adjoint transfer operator.

Exercise: show this.

More generally, we will use a different "dictionary" of functions $\{\psi_k\}$:

$$\Psi_0 = egin{bmatrix} \psi_1(x_1) & \psi_2(x_1) & \cdots & \psi_K(x_1) \ dots & dots & & dots \ \psi_1(x_N) & \psi_2(x_N) & \cdots & \psi_K(x_N) \end{bmatrix} \ \Psi_1 = egin{bmatrix} \psi_1(f(x_1)) & \psi_2(f(x_1)) & \cdots & \psi_K(f(x_1)) \ dots & & dots & & dots \ \psi_1(f(x_N)) & \psi_2(f(x_N)) & \cdots & \psi_K(f(x_N)) \end{bmatrix}$$

and apply the same ideas.

Many common transfer operator discretisation algorithms are Galerkin algorithms.

Name	operator discretised	"dictionary" functions ψ_k	μ_N (empirical measure of the x_n)	μ (limit as $N o \infty$)
Ulam's method	\mathcal{K} †	characteristic functions $\{1_E\}_{E\in P}$	varies	Lebesgue
Higher-order Ulam's method	L	C^k bump functions	-	Lebesgue
Lagrange-Chebyshev	L	Chebyshev polys on $\left[-1,1 ight]$	Chebyshev nodes $\cos \pi rac{2n-1}{2N}, n=1,\ldots,N$	$\frac{\mathrm{d}x}{\sqrt{1-x^2}}$
Lagrange-Fourier	L	complex unit circle	Evenly spaced notes	Lebesgue
Dynamical Mode Decomposition	${\cal K}$	linear functions	empirical measure of a time series †	phys. measure †
Extended DMD	\mathcal{K}		empirical measure of a time series †	phys. measure †

† = usually

Many common transfer operator discretisation algorithms are Galerkin algorithms.

Name	operator discretised	"dictionary" functions ψ_k	μ_N (empirical measure of the x_n)	μ (limit as $N ightarrow\infty$)
Ulam's method	\mathcal{K} †	characteristic functions $\{1_E\}_{E\in P}$	varies	Lebesgue
Higher-order Ulam's method	L	C^k bump functions	-	Lebesgue
Lagrange-Chebyshev	L	Chebyshev polys on $\left[-1,1 ight]$	Chebyshev nodes $\cos \pi rac{2n-1}{2N}, n=1,\ldots,N$	$\frac{\mathrm{d}x}{\sqrt{1-x^2}}$
Lagrange-Fourier	L	complex unit circle	Evenly spaced notes	Lebesgue
Dynamical Mode Decomposition	${\cal K}$	linear functions	empirical measure of a time series †	phys. measure †
Extended DMD	\mathcal{K}		empirical measure of a time series †	phys. measure †

 \dagger = usually

Often these special methods have some nice structure that makes things algorithmically, e.g. $\Psi_0^*\Psi_0$ is diagonal, or $\Psi_1^*\Psi_0$ is sparse, or...

Example: Ulam's method

Let's use the map from yesterday:

In [28]:

f(x) = (x>0 ? 2x-1 : 2x+1)+0.6(x*(1-abs(x)))
plot(-1:0.001:1,f.(-1:0.001:1));
xlim(-1,1);ylim(-1,1);xlabel("\\$x\\$");ylabel("\\$f(x)\\$")
gca().set_aspect("equal")

Our characteristic functions are supported on a partition. The values are given by:

In [30]:

K = 50 # number of basis functions
P = collect(range(-1,1,length=K+1)) # our Ulam partition
println(P)

[-1.0, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0.0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1.0]

Our characteristic functions are supported on a partition. The values are given by:

In [30]:

K = 50 # number of basis functions
P = collect(range(-1,1,length=K+1)) # our Ulam partition
println(P)

[-1.0, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0.0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1.0]

In [37]:

```
N = 10^5
x = range(-1,1,length=N) #evenly spaced on [-1,1]
Psi0 = [P[j]<=x[n]<P[j+1] for n = 1:N, j = 1:K]
Psi1 = [P[j]<=f(x[n])<P[j+1] for n = 1:N, j=1:K]
Psi0' * Psi0</pre>
```

Out[37]:

50×50 Matrix{Int64}: 2000 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 2000 $\mathbf{0}$ 0 0 $\mathbf{0}$ \mathbf{O} 0 0

•	0		0	2000		0	Θ	0		0	0
0	0	0	0	0	. 0) 2000	0	0		0	0
0	0	0	0	0	6	2000	0	0		0	0
•	0	•	0	0		0	2000	Θ		Θ	0
0	0	0	0	0	6)	0	2000		0	0
0	0	0	0	0)	0	Θ	2000	•••	0	0
0	0	0	0	0		, 0	Θ	Θ		0	0
0		0		0	6)					
0	0	0	0	0		0	Θ	Θ		0	0
0	0	0	0	0))	. 0	Θ	Θ		Θ	0
0	Ŭ	0	Ŭ	0	6)	U	Ũ		0	Ū
•	0	•	0	0		0	Θ	Θ		Θ	0
0	0	0	0	0	6)	Ο	0		0	0
0	U	0	U	0	6)	0	0	•••	0	0
	0		0	0)	0	Θ	Θ		0	0
0	0	0	0	0	6)	0	0		0	0
0	0	0	0	0 0	· •)	0	O		0	0
U	:	0		0	C			:	·		:
_	0	-	0	0		0	Θ	0		0	0
0	0	0	0	0	. C)	Q	0		0	0
0	U	0	U	0	6)	0	U		0	U

	0	0	0	0	0	0	 0	0	
0	0	0	0						
	Θ	0	Θ	0	0	Θ	0	0	
0	0	0	0						
	Θ	0	Θ	0	0	0	0	0	
0	0	0	Θ						
	Θ	0	Θ	0	0	Θ	0	0	
0	0	0	Θ						
	Θ	0	Θ	0	0	0	2000	0	
0	0	0	Θ						
	Θ	0	Θ	0	0	0	 0	2000	
0	0	0	0						
	Θ	0	Θ	0	0	Θ	0	0	200
0	0	0	0						
	0	0	0	0	0	0	0	0	
0	2000	0	0						
	Θ	0	Θ	0	0	0	0	0	
0	0	2000	Θ						
	Θ	0	Θ	0	0	Θ	0	0	
0	0	0	1999						

In [32]:

Koop = Psi0 \ Psi1
figure(figsize=(10,5));
ax1 = subplot(121)
colorbar(ax1.matshow(Koop,cmap="binary"),ax=ax1)
title("Magnitudes of Koopman matrix entries")
xlabel("\\$k\\$");ylabel("\\$j\\$")
subplot(122)
spectrumplot(true_eigs,c="grey",s=20) # true eigenvalues
spectrumplot(eigvals(Koop),s=15);
tight_layout()

Recall that the Koopman is the adjoint of the transfer operator.

We can often also approximate the action of the transfer operator as

 $(\Psi_0^*\Psi_0)^{-1}(\Psi_1^*\Psi_0).$

Idea here is that we take the transpose of the usual $\Psi_0^*\Psi_1$, but need $(\Psi_0^*\Psi_0)^{-1}$ in the same place to re-orthogonalise the basis.

In [33]:

Transf = (Psi0'*Psi0) \ (Psi1' * Psi0);

In [15]:

```
physmeas_estimate = real(eigvecs(Transf)[:,end]);
physmeas_estimate /= mean(Psi0*physmeas_estimate) # normalise to mean 1
scatter(x,Psi0*physmeas_estimate,label="Ulam",s=2)
plot(-1:0.01:1,true_ev1.(-1:0.01:1),label="true",c="C1") # true physical measure I prepared earlier
plot([-1,1],[0,0],"k--");xlim(-1,1); ylim(ymin=0);
legend()
title("Invariant density");
```


In [38]:

```
transfer_eig2 = real(eigvecs(Transf)[:,end-1]);
transfer_eig2 /= -sqrt(mean((Psi0*transfer_eig2).^2)) # normalise to l2 norm 1
scatter(x,Psi0*transfer_eig2,label="Ulam",s=2)
plot(-1:0.01:1,true_ev2.(-1:0.01:1),label="true",c="C1") # true transfer operator eigenvector I prepared earlier
plot([-1,1],[0,0],"k--");xlim(-1,1);
legend();
title("Second transfer operator eigenvector");
```


However, the Koopman eigenfunctions are worse (because they live in the dual spaces to C^r spaces, where expanding maps transfer operators have spectral gaps).

However, the Koopman eigenfunctions are worse (because they live in the dual spaces to C^r spaces, where expanding maps transfer operators have spectral gaps).

```
In [17]:
```

```
transfer_eig2 = real(eigvecs(Koop)[:,end-1]);
transfer_eig2 /= -sqrt(mean((Psi0*transfer_eig2).^2)) # normalise to l2 norm 1
scatter(x,Psi0*transfer_eig2,label="Ulam",s=2)
plot([-1,1],[0,0],"k--");xlim(-1,1);
legend();
```


Convergence rates

We have two parameters to work with:

- The number of basis functions ${\boldsymbol K}$
- The number of points N.

To study convergence, let's start by fixing K and taking $N
ightarrow \infty$.

(This is because $N
ightarrow \infty$ is a much easier question.)

Convergence in N (Klus et al. '16)

We are interested in the convergence of $K \times K$ matrices:

$$\underbrace{(\Psi_0^*\Psi_0)^{-1}}_{G^{-1}}\underbrace{(\Psi_0^*\Psi_1)}_{H}$$

(Recall that Ψ_0 and Ψ_1 are N imes K)

Convergence in N (Klus et al. '16)

We are interested in the convergence of $K \times K$ matrices:

$$\underbrace{(\Psi_0^*\Psi_0)^{-1}}_{G^{-1}}\underbrace{(\Psi_0^*\Psi_1)}_{H}$$

(Recall that Ψ_0 and Ψ_1 are N imes K)

Entries are given by

$$G_{jk} = rac{1}{N}\sum_{n=1}^N \psi_j(x_n)\psi_k(x_n)$$

$$H_{jk} = rac{1}{N}\sum_{n=1}^N \psi_j(x_n)\psi_k(f(x_n))$$

Let's just consider H for simplicity:

$$H_{jk}=rac{1}{N}\sum_{n=1}^N\psi_j(x_n)\psi_k(f(x_n))$$

Let's just consider H for simplicity:

$$H_{jk}=rac{1}{N}\sum_{n=1}^N\psi_j(x_n)\psi_k(f(x_n))$$

If the distribution of the $\{x_n\}$ approximates μ , there is an obvious limit:

$$H^\infty_{jk} = \int_M \psi_j \, \psi_k \circ f \, \mathrm{d} \mu$$

Let's just consider H for simplicity:

$$H_{jk}=rac{1}{N}\sum_{n=1}^N\psi_j(x_n)\psi_k(f(x_n))$$

If the distribution of the $\{x_n\}$ approximates μ , there is an obvious limit:

$$H^\infty_{jk} = \int_M \psi_j \, \psi_k \circ f \, \mathrm{d} \mu$$

In particular, assuming the ψ_k are at least BV, we expect $|H_{jk}-H^\infty_{jk}|$ to be:

- $\mathcal{O}(1/\sqrt{N})$ if $\{x_n\}$ are randomly sampled
- $\mathcal{O}(1/\sqrt{N})$ if $\{x_n\}$ is a chaotic time series from an exponentially mixing system.
- $\mathcal{O}(1/N)$ if x_n are evenly spaced with $\mu=$ Lebesgue
- Potentially much better for smooth ψ, f and very special choices of $\{x_n\}$, $\mu...$

So, we know that the entries of G, H converge to some limits G^{∞} , H^{∞} . If the ψ_k are linearly independent on the support of μ , then G^{∞} is invertible. So we expect our Koopman approximation

$$\mathrm{Koop} = \underbrace{(\Psi_0^*\Psi_0)^{-1}}_{G^{-1}} \underbrace{(\Psi_0^*\Psi_1)}_{H}$$

to converge to a continuum limit Koop_∞ as $\mathcal{O}(1/\sqrt{N})$ etc. In what norm doesn't matter as it's finite dimensional.

However!! There is going to be some dependence on K here. For example, for randomly selected $\{x_n\}$:

In [20]:

varyingKgraph_slides

Out[20]:

Unproven fact (conjecture?): for chaotic dynamics and x_n randomly sampled, the error for some eigenvalue

$$|\lambda_{N,K}-\lambda_{\infty,K}|=\mathcal{O}(K^s/\sqrt{N})$$

with s increasing as $\lambda
ightarrow 0.$

This is because to study smaller eigenvalues you need to approximate in C^r for larger r. This works badly with random sampling.

Convergence in K

Let's consider what happens as we have taken $N \to \infty$, so our data points $\{x_n\}$ become a continuum with measure μ .

Obviously we have to relate Koopman matrices of different size, so we think about it in function space (again).

Our continuum limit Koopman matrix $(\Psi_0^*\Psi_0)^{-1}\Psi_0^*\Psi_1$ is semi-conjugate under Ψ_0 to

$$\mathcal{P}^\mu_K\mathcal{K}=\Psi_0(\Psi_0^*\Psi_0)^{-1}\Psi_0^*\mathcal{K},$$

since $\Psi_1 = \mathcal{K}\Psi_0$. This \mathcal{P}_K^{μ} is the orthogonal projection onto the span of $\{\psi_k\}_{k=1,...,K}$ in $L^2(\mu)$.

Obviously we have to relate Koopman matrices of different size, so we think about it in function space (again).

Our continuum limit Koopman matrix $(\Psi_0^*\Psi_0)^{-1}\Psi_0^*\Psi_1$ is semi-conjugate under Ψ_0 to

$$\mathcal{P}^\mu_K\mathcal{K}=\Psi_0(\Psi_0^*\Psi_0)^{-1}\Psi_0^*\mathcal{K},$$

since $\Psi_1 = \mathcal{K}\Psi_0$. This \mathcal{P}_K^{μ} is the orthogonal projection onto the span of $\{\psi_k\}_{k=1,...,K}$ in $L^2(\mu)$.

So, we just have to understand the convergence of $\mathcal{P}^{\mu}_{K}\mathcal{K} o \mathcal{K}$.

Taking the $L^2(\mu)$ adjoint, this is the same as $\mathcal{LP}^{\mu}_K \to \mathcal{L}$ in some suitable sense.

For deterministic chaos, this process is complicated: the spectrum of \mathcal{L} in $L^2(\mu)$ is usually not meaningful.

You need to find fancy Banach spaces that:

1. Have one of:

- a Lasota-Yorke inequality so you can use Keller-Liverani ('00)
- compactness of ${\cal L}$ (à la Julia), which is unusual
- 2. Play nicely with \mathcal{P}^{μ}_{K}

For deterministic chaos, this process is complicated: the spectrum of \mathcal{L} in $L^2(\mu)$ is usually not meaningful.

You need to find fancy Banach spaces that:

1. Have one of:

- a Lasota-Yorke inequality so you can use Keller-Liverani ('00)
- compactness of ${\cal L}$ (à la Julia), which is unusual
- 2. Play nicely with \mathcal{P}^{μ}_{K}

Obviously for most dynamical systems this is *A Very Open Problem* (see Rigorous Level 5)

For dynamical systems we can do stuff with, partial results are out there for the special cases: Ulam, Chebyshev-Lagrange, ...

For dynamical systems we can do stuff with, partial results are out there for the special cases: Ulam, Chebyshev-Lagrange, ...

Theorem (W. in preparation): Suppose * f is an analytic uniformly expanding map of the circle * μ has some analytic density * $\{\psi_k\}_{k=1,...,K}$ are a polynomial basis. Then for some R > r > 1,

$$\|\mathcal{L}\mathcal{P}_K-\mathcal{L}\|_{H^\infty(A_r)}\leq C(R/r)^{-K}.$$

Hence, in the infinite N limit, Koopman matrix data converge exponentially fast with K.

For dynamical systems we can do stuff with, partial results are out there for the special cases: Ulam, Chebyshev-Lagrange, ...

Theorem (W. in preparation): Suppose * f is an analytic uniformly expanding map of the circle * μ has some analytic density * $\{\psi_k\}_{k=1,...,K}$ are a polynomial basis. Then for some R > r > 1,

$$\|\mathcal{L}\mathcal{P}_K-\mathcal{L}\|_{H^\infty(A_r)}\leq C(R/r)^{-K}.$$

Hence, in the infinite N limit, Koopman matrix data converge exponentially fast with K.

Of course, this is the nicest possible setting and convergence will be a lot slower for anything not analytic, uniformly hyperbolic...

Thank you!