Numerical methods in (non-hyperbolic) chaos

Part 4: Koopman and transfer operator discretisations II

Caroline Wormell, Sorbonne Université/CNRS

Yesterday: Galerkin approximation is a common means of approximation. It is just fancy least squares.

A very simple, classic example is trying to do a linear approximation:
In [2]:

```
u(x)=2sin(2x)
    a = 0.2; b = 2
plot(0:0.01:1,u.(0:0.01:1), label="\$u\$")
plot([0,1],a .+ b*[0,1],c="C1",label="\$ y = a + bx\$")
legend();
```


On a computer (or from data) though, we might only have a finite number of points $\left\{x_{n}\right\}_{n=1, \ldots, N}$ with which to do this:

In [3]:

```
x = rand(100)
ux = u.(x)
scatter(x,ux,label="\$u\$ data points")
plot([0,1],a .+ b*[0,1],c="C1",label="\$ y = a + bx\$, by eye")
legend();
```


How to best choose parameters a, b ? Maybe try to minimise the mean squared error:

$$
\frac{1}{N} \sum_{n=0}^{N-1}\left(u\left(x_{n}\right)-\left(a+b x_{n}\right)\right)^{2}
$$

If we write

$$
\Psi_{0}=\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right)
$$

you may remember from statistics that the best choice of a, b are

$$
\binom{a}{b}=\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1} \Psi_{0}^{*}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

Psi0 = [ones(100) x] ab_vector = (Psi0' * Psi0) \ Psi0' * ux
$a, \bar{b}=a b _v e c t o r[1], ~ a b _v e c t o r[2]$

Out [4]:

(0.4451948291899738, 1.8887215843244562)

In [5]:

scatter(x,ux,label="
\$u
\$ data points")

plot([0,1],ab_vector[1] .+ ab_vector[2]*[0,1],c="C1",label="
\$ y = a + bx
\$, best fit") legend();

Let's now imagine u is some linear transformation of a function in our dictionary $\{1, x\}$:

$$
u=\alpha+\beta f(x)
$$

In [6]:

```
\alpha=1; \beta = -1;
f(x) = mod(2x,1
x = rand(100)
ux = \alpha .+ \beta*f.(x)
scatter(x,ux,label="\$u = f(x)\$ data points")
Psi0 = [ones(100) x]
ab_vector = (Psi0' * Psi0) \ Psi0' * ux
a,b = ab_vector[1], ab_vector[2]
plot([0,1],a .+ b*[0,1],c="C1",label="\$ y = a + bx\$, best fit")
legend(); ylim(ymin=0)
```


Out[6]:
(0.0, 1.045342796476386)

We could write

$$
u=\Psi_{1}\binom{\alpha}{\beta}
$$

Then our best linear approximation in our dictionary is given by coefficients

$$
\binom{a}{b}=\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1} \Psi_{0}^{*} \Psi_{1}\binom{\alpha}{\beta}
$$

We could write

$$
u=\Psi_{1}\binom{\alpha}{\beta}
$$

Then our best linear approximation in our dictionary is given by coefficients

$$
\binom{a}{b}=\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1} \Psi_{0}^{*} \Psi_{1}\binom{\alpha}{\beta}
$$

This series of Ψ 's is a 2×2 matrix encoding the action of composition by f (i.e. the Koopman operator of the doubling map), approximated in this basis $\{1, x\}$

Out［7］：
In［8］：
using LinearAlgebra
spectrumplot（0．5．＾（0：100），s＝15，c＝＂grey＂） spectrumplot（eigvals（Koop），s＝20）；

The second eigenvalue is accurately captured！

With these linear functions $\{1, x\}$ we are doing Dynamical Mode Decomposition.
For many high-dimensional systems, it works reasonably well.
In in our case, it works because because $\{1, x\}$ is a closed subspace of the Koopman operator's $L^{2}(\mathrm{~d} x)$ adjoint transfer operator.

Exercise: show this.

More generally, we will use a different "dictionary" of functions $\left\{\psi_{k}\right\}$:

$$
\begin{gathered}
\Psi_{0}=\left[\begin{array}{cccc}
\psi_{1}\left(x_{1}\right) & \psi_{2}\left(x_{1}\right) & \cdots & \psi_{K}\left(x_{1}\right) \\
\vdots & \vdots & & \vdots \\
\psi_{1}\left(x_{N}\right) & \psi_{2}\left(x_{N}\right) & \cdots & \psi_{K}\left(x_{N}\right)
\end{array}\right] \\
\Psi_{1}=\left[\begin{array}{cccc}
\psi_{1}\left(f\left(x_{1}\right)\right) & \psi_{2}\left(f\left(x_{1}\right)\right) & \cdots & \psi_{K}\left(f\left(x_{1}\right)\right) \\
\vdots & \vdots & & \vdots \\
\psi_{1}\left(f\left(x_{N}\right)\right) & \psi_{2}\left(f\left(x_{N}\right)\right) & \cdots & \psi_{K}\left(f\left(x_{N}\right)\right)
\end{array}\right]
\end{gathered}
$$

and apply the same ideas.

Many common transfer operator discretisation algorithms are Galerkin algorithms.

	operator discretised	"dictionary" functions ψ_{k}	$\mu_{N}\left(\right.$ empirical measure of the $\left.x_{n}\right)$	μ (limit as $N \rightarrow \infty$
Ulam's method	$\mathcal{K} \dagger$	characteristic functions $\left\{1_{E}\right\}_{E \in P}$	varies	Lebesgue
Higher-order Ulam's method	\mathcal{L}	C^{k} bump functions	-	Lebesgue
Lagrange-Chebyshev	\mathcal{L}	Chebyshev polys on $[-1,1]$	Chebyshev nodes $\cos \pi \frac{2 n-1}{2 N}, n=1, \ldots, N$	$\frac{\mathrm{~d} x}{\sqrt{1-x^{2}}}$
Lagrange-Fourier \mathcal{L} complex unit circle Evenly spaced notes				
Dynamical Mode Decomposition	\mathcal{K}	linear functions	empirical measure of a time series \dagger	phys. measure \dagger
Extended DMD	\mathcal{K}		empirical measure of a time series \dagger	phys. measure \dagger

$\dagger=$ usually

Many common transfer operator discretisation algorithms are Galerkin algorithms.

	operator discretised	"dictionary" functions ψ_{k}	$\mu_{N}\left(\right.$ empirical measure of the $\left.x_{n}\right)$	$\mu($ limit as $N \rightarrow \infty$
Ulam's method	$\mathcal{K} \dagger$	characteristic functions $\left\{1_{E}\right\}_{E \in P}$	varies	Lebesgue
Higher-order Ulam's method	\mathcal{L}	C^{k} bump functions	-	Lebesgue
Lagrange-Chebyshev	\mathcal{L}	Chebyshev polys on $[-1,1]$	Chebyshev nodes $\cos \pi \frac{2 n-1}{2 N}, n=1, \ldots, N$	$\frac{\mathrm{~d} x}{\sqrt{1-x^{2}}}$
Lagrange-Fourier \mathcal{L} complex unit circle Evenly spaced notes				
Dynamical Mode Decomposition	\mathcal{K}	linear functions	empirical measure of a time series \dagger	phys. measure \dagger
Extended DMD	\mathcal{K}		empirical measure of a time series \dagger	phys. measure \dagger

$\dagger=$ usually

Often these special methods have some nice structure that makes things algorithmically, e.g. $\Psi_{0}^{*} \Psi_{0}$ is diagonal, or $\Psi_{1}^{*} \Psi_{0}$ is sparse, or...

Example: Ulam's method

Let's use the map from yesterday:
In [28]:

$$
f(x)=(x>0 \text { ? } 2 x-1: 2 x+1)+0.6\left(x^{*}(1-a b s(x))\right)
$$

plot(-1:0.001:1,f.(-1:0.001:1));
xlim(-1,1);ylim(-1,1);xlabel("
\$x
\$");ylabel("
\$f(x)
\$")
gca().set_aspect("equal")

Our characteristic functions are supported on a partition. The values are given by:
In [30]:

```
K = 50 # number of basis functions
P = collect(range(-1,1,length=K+1)) # our Ulam partition
println(P)
```

$$
\begin{aligned}
& {[-1.0,-0.96,-0.92,-0.88,-0.84,-0.8,-0.76,-0.72,} \\
& -0.68,-0.64,-0.6,-0.56,-0.52,-0.48,-0.44,-0.4,- \\
& 0.36,-0.32,-0.28,-0.24,-0.2,-0.16,-0.12,-0.08,- \\
& 0.04,0.0,0.04,0.08,0.12,0.16,0.2,0.24,0.28,0.3 \\
& 2,0.36,0.4,0.44,0.48,0.52,0.56,0.6,0.64,0.68, \\
& 0.72,0.76,0.8,0.84,0.88,0.92,0.96,1.0]
\end{aligned}
$$

Our characteristic functions are supported on a partition. The values are given by:
In [30]:

```
K = 50 # number of basis functions
P = collect(range(-1,1,length=K+1)) # our Ulam partition
println(P)
```

$$
\begin{aligned}
& {[-1.0,-0.96,-0.92,-0.88,-0.84,-0.8,-0.76,-0.72,} \\
& -0.68,-0.64,-0.6,-0.56,-0.52,-0.48,-0.44,-0.4,- \\
& 0.36,-0.32,-0.28,-0.24,-0.2,-0.16,-0.12,-0.08,- \\
& 0.04,0.0,0.04,0.08,0.12,0.16,0.2,0.24,0.28,0.3 \\
& 2,0.36,0.4,0.44,0.48,0.52,0.56,0.6,0.64,0.68, \\
& 0.72,0.76,0.8,0.84,0.88,0.92,0.96,1.0]
\end{aligned}
$$

In [37]:

```
x = range(-1,1,length=N) #evenly spaced on [-1,1]
Psi0 = [P[j]<=x[n]<P[j+1] for n = 1:N, j = 1:K]
Psi1 = [P[j]<=f(x[n])<P[j+1] for n = 1:N, j=1:K]
Psi0' * Psi0
```

Out[37]:

	0	0	0	0	0	0	...	0	0	
0	0	0	0							
	0	0	0	0	0	0		0	0	
0	0	0	0							
	0	0	0	0	0	0		0	0	
0	0	0	0							
	0	0	0	0	0	0		0	0	
0	0	0	0							
	0	0	0	0	0	0			0	
0	0	0	0							
	0	0	0	0	0	0	...	0		
0	0	0	0							
	0	0	0	0	0	0		0	0	200
0	0	0	0							
	0	0	0	0	0	0		0	0	
0	2000	0	0							
	0	0	0	0	0	0		0	0	
0	0	2000	0							
	0	0	0	0	0	0		0	0	
0	0	0	1999							

```
Koop = Psi0 \ Psi1
figure(figsize=(10,5));
ax1 = subplot(121)
colorbar(ax1.matshow(Koop,cmap="binary"),ax=ax1)
title("Magnitudes of Koopman matrix entries")
xlabel("\$k\$");ylabel("\$j\$")
subplot(122)
spectrumplot(true eigs,c="grey",s=20) # true eigenvalues
spectrumplot(eigvals(Koop),s=15);
tight_layout()
```


Recall that the Koopman is the adjoint of the transfer operator.
We can often also approximate the action of the transfer operator as

$$
\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1}\left(\Psi_{1}^{*} \Psi_{0}\right)
$$

Idea here is that we take the transpose of the usual $\Psi_{0}^{*} \Psi_{1}$, but need $\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1}$ in the same place to re-orthogonalise the basis.
physmeas_estimate $=$ real(eigvecs(Transf)[:,end]);
physmeas_estimate /= mean(Psi0*physmeas_estimate) \# normalise to mean 1
scatter(x,Psi0*physmeas estimate, label="Ulam", s=2)
plot(-1:0.01:1,true_ev1.(-1:0.01:1), label="true", c="C1") \# true physical measure I prepared earlier
plot $([-1,1],[0,0], " \bar{k}--") ; x \lim (-1,1) ; y \lim (y m i n=0)$;
legend()
title("Invariant density");

transfer_eig2 /= -sqrt(mean((Psi0*transfer_eig2).^2)) \# normalise to 22 norm 1
scatter(x,Psi0*transfer eig2, label="Ulam", s=2)
plot(-1:0.01:1,true_ev2-(-1:0.01:1), label="true", c="C1") \# true transfer operator eigenvector I prepared earlier plot ([-1,1], [0, 0], " $\bar{k}--") ; x \lim (-1,1)$;
legend();
title("Second transfer operator eigenvector");

However, the Koopman eigenfunctions are worse (because they live in the dual spaces to C^{r} spaces, where expanding maps transfer operators have spectral gaps).

However, the Koopman eigenfunctions are worse (because they live in the dual spaces to C^{r} spaces, where expanding maps transfer operators have spectral gaps).

In [17]:

```
transfer_eig2 = real(eigvecs(Koop)[:,end-1]);
transfer_eig2 /= -sqrt(mean((Psi0*transfer_eig2).^2)) # normalise to l2 norm 1
```



```
plot([-1,1],[0,0],"k--");xlim(-1,1);
legend();
```


Convergence rates

We have two parameters to work with:

- The number of basis functions K
- The number of points N.

To study convergence, let's start by fixing K and taking $N \rightarrow \infty$.
(This is because $N \rightarrow \infty$ is a much easier question.)

Convergence in N (Klus et al. '16)

We are interested in the convergence of $K \times K$ matrices:

$$
\underbrace{\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1}}_{G^{-1}} \underbrace{\left(\Psi_{0}^{*} \Psi_{1}\right)}_{H}
$$

(Recall that Ψ_{0} and Ψ_{1} are $N \times K$)

Convergence in N (Klus et al. '16)

We are interested in the convergence of $K \times K$ matrices:

$$
\underbrace{\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1}}_{G^{-1}} \underbrace{\left(\Psi_{0}^{*} \Psi_{1}\right)}_{H}
$$

(Recall that Ψ_{0} and Ψ_{1} are $N \times K$)

Entries are given by

$$
\begin{aligned}
G_{j k} & =\frac{1}{N} \sum_{n=1}^{N} \psi_{j}\left(x_{n}\right) \psi_{k}\left(x_{n}\right) \\
H_{j k} & =\frac{1}{N} \sum_{n=1}^{N} \psi_{j}\left(x_{n}\right) \psi_{k}\left(f\left(x_{n}\right)\right)
\end{aligned}
$$

Let's just consider H for simplicity:

$$
H_{j k}=\frac{1}{N} \sum_{n=1}^{N} \psi_{j}\left(x_{n}\right) \psi_{k}\left(f\left(x_{n}\right)\right)
$$

Let's just consider H for simplicity:

$$
H_{j k}=\frac{1}{N} \sum_{n=1}^{N} \psi_{j}\left(x_{n}\right) \psi_{k}\left(f\left(x_{n}\right)\right)
$$

If the distribution of the $\left\{x_{n}\right\}$ approximates μ, there is an obvious limit:

$$
H_{j k}^{\infty}=\int_{M} \psi_{j} \psi_{k} \circ f \mathrm{~d} \mu
$$

Let's just consider H for simplicity:

$$
H_{j k}=\frac{1}{N} \sum_{n=1}^{N} \psi_{j}\left(x_{n}\right) \psi_{k}\left(f\left(x_{n}\right)\right)
$$

If the distribution of the $\left\{x_{n}\right\}$ approximates μ, there is an obvious limit:

$$
H_{j k}^{\infty}=\int_{M} \psi_{j} \psi_{k} \circ f \mathrm{~d} \mu
$$

In particular, assuming the ψ_{k} are at least $B V$, we expect $\left|H_{j k}-H_{j k}^{\infty}\right|$ to be:

- $\mathcal{O}(1 / \sqrt{N})$ if $\left\{x_{n}\right\}$ are randomly sampled
- $\mathcal{O}(1 / \sqrt{N})$ if $\left\{x_{n}\right\}$ is a chaotic time series from an exponentially mixing system.
- $\mathcal{O}(1 / N)$ if x_{n} are evenly spaced with $\mu=$ Lebesgue
- Potentially much better for smooth ψ, f and very special choices of $\left\{x_{n}\right\}, \mu \ldots$

So, we know that the entries of G, H converge to some limits G^{∞}, H^{∞}.
If the ψ_{k} are linearly independent on the support of μ, then G^{∞} is invertible.
So we expect our Koopman approximation

$$
\text { Koop }=\underbrace{\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1}}_{G^{-1}} \underbrace{\left(\Psi_{0}^{*} \Psi_{1}\right)}_{H}
$$

to converge to a continuum limit $\operatorname{Koop}_{\infty}$ as $\mathcal{O}(1 / \sqrt{N})$ etc. In what norm doesn't matter as it's finite dimensional.

However!! There is going to be some dependence on K here. For example, for randomly selected $\left\{x_{n}\right\}$:

In [20]:

Out[20]:

Unproven fact (conjecture?): for chaotic dynamics and x_{n} randomly sampled, the error for some eigenvalue

$$
\left|\lambda_{N, K}-\lambda_{\infty, K}\right|=\mathcal{O}\left(K^{s} / \sqrt{N}\right)
$$

with s increasing as $\lambda \rightarrow 0$.
This is because to study smaller eigenvalues you need to approximate in C^{r} for larger r. This works badly with random sampling.

Convergence in K

Let's consider what happens as we have taken $N \rightarrow \infty$, so our data points $\left\{x_{n}\right\}$ become a continuum with measure μ.

Obviously we have to relate Koopman matrices of different size, so we think about it in function space (again).

Our continuum limit Koopman matrix $\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1} \Psi_{0}^{*} \Psi_{1}$ is semi-conjugate under Ψ_{0} to

$$
\mathcal{P}_{K}^{\mu} \mathcal{K}=\Psi_{0}\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1} \Psi_{0}^{*} \mathcal{K}
$$

since $\Psi_{1}=\mathcal{K} \Psi_{0}$. This \mathcal{P}_{K}^{μ} is the orthogonal projection onto the span of $\left\{\psi_{k}\right\}_{k=1, \ldots, K}$ in $L^{2}(\mu)$.

Obviously we have to relate Koopman matrices of different size, so we think about it in function space (again).

Our continuum limit Koopman matrix $\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1} \Psi_{0}^{*} \Psi_{1}$ is semi-conjugate under Ψ_{0} to

$$
\mathcal{P}_{K}^{\mu} \mathcal{K}=\Psi_{0}\left(\Psi_{0}^{*} \Psi_{0}\right)^{-1} \Psi_{0}^{*} \mathcal{K}
$$

since $\Psi_{1}=\mathcal{K} \Psi_{0}$. This \mathcal{P}_{K}^{μ} is the orthogonal projection onto the span of $\left\{\psi_{k}\right\}_{k=1, \ldots, K}$ in $L^{2}(\mu)$.

So, we just have to understand the convergence of $\mathcal{P}_{K}^{\mu} \mathcal{K} \rightarrow \mathcal{K}$.
Taking the $L^{2}(\mu)$ adjoint, this is the same as $\mathcal{L} \mathcal{P}_{K}^{\mu} \rightarrow \mathcal{L}$ in some suitable sense.

For deterministic chaos, this process is complicated: the spectrum of \mathcal{L} in $L^{2}(\mu)$ is usually not meaningful.

You need to find fancy Banach spaces that:

1. Have one of:

- a Lasota-Yorke inequality so you can use Keller-Liverani ('00)
- compactness of \mathcal{L} (à la Julia), which is unusual

2. Play nicely with \mathcal{P}_{K}^{μ}

For deterministic chaos, this process is complicated: the spectrum of \mathcal{L} in $L^{2}(\mu)$ is usually not meaningful.

You need to find fancy Banach spaces that:

1. Have one of:

- a Lasota-Yorke inequality so you can use Keller-Liverani ('00)
- compactness of \mathcal{L} (à la Julia), which is unusual

2. Play nicely with \mathcal{P}_{K}^{μ}

Obviously for most dynamical systems this is A Very Open Problem (see Rigorous Level 5)

For dynamical systems we can do stuff with, partial results are out there for the special cases: Ulam, Chebyshev-Lagrange, ...

For dynamical systems we can do stuff with, partial results are out there for the special cases: Ulam, Chebyshev-Lagrange, ...

Theorem (W. in preparation): Suppose * f is an analytic uniformly expanding map of the circle * μ has some analytic density * $\left\{\psi_{k}\right\}_{k=1, \ldots, K}$ are a polynomial basis. Then for some $R>r>1$,

$$
\left\|\mathcal{L} \mathcal{P}_{K}-\mathcal{L}\right\|_{H^{\infty}\left(A_{r}\right)} \leq C(R / r)^{-K}
$$

Hence, in the infinite N limit, Koopman matrix data converge exponentially fast with K.

For dynamical systems we can do stuff with, partial results are out there for the special cases: Ulam, Chebyshev-Lagrange, ...

Theorem (W. in preparation): Suppose * f is an analytic uniformly expanding map of the circle * μ has some analytic density * $\left\{\psi_{k}\right\}_{k=1, \ldots, K}$ are a polynomial basis. Then for some $R>r>1$,

$$
\left\|\mathcal{L} \mathcal{P}_{K}-\mathcal{L}\right\|_{H^{\infty}\left(A_{r}\right)} \leq C(R / r)^{-K}
$$

Hence, in the infinite N limit, Koopman matrix data converge exponentially fast with K.

Of course, this is the nicest possible setting and convergence will be a lot slower for anything not analytic, uniformly hyperbolic...

Thank you!

