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Yesterday: Galerkin approximation is a common means of approximation. It is just fancy
least squares.



A very simple, classic example is trying to do a linear approximation:

In [2]:
u(x) = 2sin(2x)

a = 0.2; b = 2

plot(0:0.01:1,u.(0:0.01:1),label="\$u\$")

plot([0,1],a .+ b*[0,1],c="C1",label="\$ y =  a + bx\$")

legend();



On a computer (or from data) though, we might only have a finite number of points
 with which to do this:{xn}n=1,…,N

In [3]:
x = rand(100)

ux = u.(x)

scatter(x,ux,label="\$u\$ data points")

plot([0,1],a .+ b*[0,1],c="C1",label="\$ y =  a + bx\$, by eye")

legend();



How to best choose parameters ? Maybe try to minimise the mean squared error:a, b

N−1

∑
n=0

(u(xn) − (a + bxn))21
N



If we write

you may remember from statistics that the best choice of  are

Ψ0 =

⎛
⎜⎜⎜⎜
⎝

1 x1

1 x2

⋮ ⋮
1 xn

⎞
⎟⎟⎟⎟
⎠

a, b

(
a

b
) = (Ψ∗

0Ψ0)−1Ψ∗
0

⎛
⎜⎜⎜⎜
⎝

u1

u2

⋮
un

⎞
⎟⎟⎟⎟
⎠



In [4]:
Psi0 = [ones(100) x]

ab_vector = (Psi0' * Psi0) \ Psi0' * ux

a,b = ab_vector[1], ab_vector[2]

Out[4]:

(0.4451948291899738, 1.8887215843244562)

In [5]:
scatter(x,ux,label="\$u\$ data points")

plot([0,1],ab_vector[1] .+ ab_vector[2]*[0,1],c="C1",label="\$ y =  a + bx\$, best fit")

legend();





Let's now imagine  is some linear transformation of a function in our dictionary :u {1, x}

u = α + βf(x)

In [6]:
α = 1; β = -1;

f(x) = mod(2x,1)

x = rand(100)

ux = α .+ β*f.(x)

scatter(x,ux,label="\$u = f(x)\$ data points")

Psi0 = [ones(100) x]

ab_vector = (Psi0' * Psi0) \ Psi0' * ux

a,b = ab_vector[1], ab_vector[2]

plot([0,1],a .+ b*[0,1],c="C1",label="\$ y =  a + bx\$, best fit")

legend(); ylim(ymin=0)



Out[6]:

(0.0, 1.045342796476386)



We could write

Then our best linear approximation in our dictionary is given by coefficients

u = Ψ1 (
α

β
)

(
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) = (Ψ∗

0Ψ0)−1Ψ∗
0Ψ1 (

α

β
) .



We could write

Then our best linear approximation in our dictionary is given by coefficients

u = Ψ1 (
α

β
)

(
a

b
) = (Ψ∗

0Ψ0)−1Ψ∗
0Ψ1 (

α

β
) .

This series of 's is a  matrix encoding the action of composition by  (i.e. the
Koopman operator of the doubling map), approximated in this basis 

Ψ 2 × 2 f
{1, x}

In [7]:
Psi1 = [ones(100) f.(x)]

Koop = (Psi0' * Psi0) \ (Psi0' * Psi1)



Out[7]:

2×2 Matrix{Float64}:

 1.0  0.313587

 0.0  0.439433

The second eigenvalue is accurately captured!

In [8]:
using LinearAlgebra

spectrumplot(0.5.^(0:100),s=15,c="grey")

spectrumplot(eigvals(Koop),s=20);



With these linear functions  we are doing Dynamical Mode Decomposition.

For many high-dimensional systems, it works reasonably well.

In in our case, it works because because  is a closed subspace of the Koopman
operator's  adjoint transfer operator.

Exercise: show this.

{1, x}

{1, x}
L2(dx)



More generally, we will use a different "dictionary" of functions :

and apply the same ideas.

{ψk}

Ψ0 =
⎡
⎢⎢
⎣

ψ1(x1) ψ2(x1) ⋯ ψK(x1)

⋮ ⋮ ⋮
ψ1(xN ) ψ2(xN ) ⋯ ψK(xN )

⎤
⎥⎥
⎦

Ψ1 =
⎡
⎢⎢
⎣

ψ1(f(x1)) ψ2(f(x1)) ⋯ ψK(f(x1))

⋮ ⋮ ⋮
ψ1(f(xN )) ψ2(f(xN )) ⋯ ψK(f(xN ))

⎤
⎥⎥
⎦



Many common transfer operator discretisation

algorithms are Galerkin algorithms.

Name operator
discretised "dictionary" functions  (empirical measure of the )  (limit as

)

Ulam's method  †
characteristic functions

varies Lebesgue

Higher-order Ulam's method  bump functions - Lebesgue

Lagrange-Chebyshev Chebyshev polys on 
Chebyshev nodes

Lagrange-Fourier complex unit circle Evenly spaced notes Lebesgue

Dynamical Mode
Decomposition linear functions empirical measure of a time series † phys. measure †

Extended DMD empirical measure of a time series † phys. measure †

† = usually

ψk μN xn
μ
N → ∞

K {1E}E∈P

L C k

L [−1, 1] cos π , n = 1, … , N
2n−1
2N

dx

√1−x2

L

K

K
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Often these special methods have some nice structure that makes things algorithmically,
e.g.  is diagonal, or  is sparse, or…Ψ∗

0Ψ0 Ψ∗
1Ψ0



Example: Ulam's method



Let's use the map from yesterday:

In [28]:
f(x) = (x>0 ? 2x-1 : 2x+1)+0.6(x*(1-abs(x)))

plot(-1:0.001:1,f.(-1:0.001:1));

xlim(-1,1);ylim(-1,1);xlabel("\$x\$");ylabel("\$f(x)\$")

gca().set_aspect("equal")



Our characteristic functions are supported on a partition. The values are given by:

In [30]:
K = 50 # number of basis functions

P = collect(range(-1,1,length=K+1)) # our Ulam partition

println(P)

[-1.0, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, 

-0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -

0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -

0.04, 0.0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.3

2, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 

0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1.0]







Our characteristic functions are supported on a partition. The values are given by:

In [30]:
K = 50 # number of basis functions

P = collect(range(-1,1,length=K+1)) # our Ulam partition

println(P)

[-1.0, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, 

-0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -

0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -
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In [37]:
N = 10^5

x = range(-1,1,length=N) #evenly spaced on [-1,1]

Psi0 = [P[j]<=x[n]<P[j+1] for n = 1:N, j = 1:K]

Psi1 = [P[j]<=f(x[n])<P[j+1] for n = 1:N, j=1:K] 

 

Psi0' * Psi0

Out[37]:

50×50 Matrix{Int64}:

 2000     0     0     0     0     0  …     0     0     

0     0     0     0

    0  2000     0     0     0     0        0     0     

0     0     0     0



    0     0  2000     0     0     0        0     0     

0     0     0     0

    0     0     0  2000     0     0        0     0     

0     0     0     0

    0     0     0     0  2000     0        0     0     

0     0     0     0

    0     0     0     0     0  2000  …     0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0  …     0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    ⋮                             ⋮  ⋱           ⋮    

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0



    0     0     0     0     0     0  …     0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0        0     0     

0     0     0     0

    0     0     0     0     0     0     2000     0     

0     0     0     0

    0     0     0     0     0     0  …     0  2000     

0     0     0     0

    0     0     0     0     0     0        0     0  200

0     0     0     0

    0     0     0     0     0     0        0     0     

0  2000     0     0

    0     0     0     0     0     0        0     0     

0     0  2000     0

    0     0     0     0     0     0        0     0     

0     0     0  1999



In [32]:
Koop = Psi0 \ Psi1

figure(figsize=(10,5)); 

ax1 = subplot(121)

colorbar(ax1.matshow(Koop,cmap="binary"),ax=ax1)

title("Magnitudes of Koopman matrix entries")

xlabel("\$k\$");ylabel("\$j\$")

subplot(122)

spectrumplot(true_eigs,c="grey",s=20) # true eigenvalues

spectrumplot(eigvals(Koop),s=15);

tight_layout()



Recall that the Koopman is the adjoint of the transfer operator.

We can often also approximate the action of the transfer operator as

Idea here is that we take the transpose of the usual , but need  in the
same place to re-orthogonalise the basis.

(Ψ∗
0Ψ0)−1(Ψ∗

1Ψ0).

Ψ∗
0Ψ1 (Ψ∗

0Ψ0)−1

In [33]:
Transf = (Psi0'*Psi0) \ (Psi1' * Psi0);



In [15]:
physmeas_estimate = real(eigvecs(Transf)[:,end]); 

physmeas_estimate /= mean(Psi0*physmeas_estimate) # normalise to mean 1

scatter(x,Psi0*physmeas_estimate,label="Ulam",s=2)

plot(-1:0.01:1,true_ev1.(-1:0.01:1),label="true",c="C1") # true physical measure I prepared earlier

plot([-1,1],[0,0],"k--");xlim(-1,1); ylim(ymin=0);

legend()

title("Invariant density");



In [38]:
transfer_eig2 = real(eigvecs(Transf)[:,end-1]); 

transfer_eig2 /= -sqrt(mean((Psi0*transfer_eig2).^2)) # normalise to l2 norm 1

scatter(x,Psi0*transfer_eig2,label="Ulam",s=2)

plot(-1:0.01:1,true_ev2.(-1:0.01:1),label="true",c="C1") # true transfer operator eigenvector I prepared earlier

plot([-1,1],[0,0],"k--");xlim(-1,1);

legend();

title("Second transfer operator eigenvector");



However, the Koopman eigenfunctions are worse (because they live in the dual spaces to
 spaces, where expanding maps transfer operators have spectral gaps).C r



However, the Koopman eigenfunctions are worse (because they live in the dual spaces to
 spaces, where expanding maps transfer operators have spectral gaps).C r

In [17]:
transfer_eig2 = real(eigvecs(Koop)[:,end-1]); 

transfer_eig2 /= -sqrt(mean((Psi0*transfer_eig2).^2)) # normalise to l2 norm 1

scatter(x,Psi0*transfer_eig2,label="Ulam",s=2)

plot([-1,1],[0,0],"k--");xlim(-1,1);

legend();



Convergence rates

We have two parameters to work with:

The number of basis functions 
The number of points .

To study convergence, let's start by fixing  and taking .

(This is because  is a much easier question.)

K

N

K N → ∞

N → ∞



Convergence in  (Klus et al. '16)

We are interested in the convergence of  matrices:

(Recall that  and  are )

N
K × K

(Ψ∗
0Ψ0)−1


G−1

(Ψ∗
0Ψ1)


H

Ψ0 Ψ1 N × K
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We are interested in the convergence of  matrices:

(Recall that  and  are )

N
K × K

(Ψ∗
0Ψ0)−1


G−1

(Ψ∗
0Ψ1)


H

Ψ0 Ψ1 N × K

Entries are given by

Gjk =
N

∑
n=1

ψj(xn)ψk(xn)
1
N

Hjk =
N

∑
n=1

ψj(xn)ψk(f(xn))
1
N
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Hjk =
N

∑
n=1
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1
N

If the distribution of the  approximates , there is an obvious limit:{xn} μ

H ∞
jk

= ∫
M

ψj ψk ∘ f dμ



Let's just consider  for simplicity:H

Hjk =
N

∑
n=1

ψj(xn)ψk(f(xn))
1
N

If the distribution of the  approximates , there is an obvious limit:{xn} μ

H ∞
jk

= ∫
M

ψj ψk ∘ f dμ

In particular, assuming the  are at least , we expect  to be:

 if  are randomly sampled

 if  is a chaotic time series from an exponentially mixing system.
 if  are evenly spaced with  Lebesgue

Potentially much better for smooth  and very special choices of , …

ψk BV |Hjk − H ∞
jk

|

O(1/√N) {xn}
O(1/√N) {xn}
O(1/N) xn μ =

ψ, f {xn} μ



So, we know that the entries of  converge to some limits .

If the  are linearly independent on the support of , then  is invertible.

So we expect our Koopman approximation

to converge to a continuum limit  as  etc. In what norm doesn't matter
as it's finite dimensional.

G, H G∞, H ∞

ψk μ G∞

Koop = (Ψ∗
0Ψ0)−1


G−1

(Ψ∗
0Ψ1)


H

Koop∞ O(1/√N)



However!! There is going to be some dependence on  here. For example, for randomly
selected :

K
{xn}

In [20]:
varyingKgraph_slides



Out[20]:



Unproven fact (conjecture?): for chaotic dynamics and  randomly sampled, the error for
some eigenvalue

with  increasing as .

This is because to study smaller eigenvalues you need to approximate in  for larger .
This works badly with random sampling.

xn

|λN ,K − λ∞,K| = O(K s/√N)

s λ → 0

C r r



Convergence in 

Let's consider what happens as we have taken , so our data points 
become a continuum with measure .

K
N → ∞ {xn}

μ



Obviously we have to relate Koopman matrices of different size, so we think about it in
function space (again).

Our continuum limit Koopman matrix  is semi-conjugate under  to

since . This  is the orthogonal projection onto the span of  in
.

(Ψ∗
0Ψ0)−1Ψ∗

0Ψ1 Ψ0

P
μ

K
K = Ψ0(Ψ∗

0Ψ0)−1Ψ∗
0K,

Ψ1 = KΨ0 P
μ

K
{ψk}k=1,…,K

L2(μ)



Obviously we have to relate Koopman matrices of different size, so we think about it in
function space (again).

Our continuum limit Koopman matrix  is semi-conjugate under  to

since . This  is the orthogonal projection onto the span of  in
.

(Ψ∗
0Ψ0)−1Ψ∗

0Ψ1 Ψ0

P
μ

K
K = Ψ0(Ψ∗

0Ψ0)−1Ψ∗
0K,

Ψ1 = KΨ0 P
μ

K
{ψk}k=1,…,K

L2(μ)

So, we just have to understand the convergence of .

Taking the  adjoint, this is the same as  in some suitable sense.

P
μ

K
K → K

L2(μ) LP
μ

K → L



For deterministic chaos, this process is complicated: the spectrum of  in  is
usually not meaningful.

You need to find fancy Banach spaces that:

1. Have one of:
a Lasota-Yorke inequality so you can use Keller-Liverani ('00)
compactness of  (à la Julia), which is unusual

2. Play nicely with 

L L2(μ)

L

P
μ

K
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L

P
μ

K

Obviously for most dynamical systems this is A Very Open Problem (see Rigorous Level
5)



For dynamical systems we can do stuff with, partial results are out there for the special
cases: Ulam, Chebyshev-Lagrange, …
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Theorem (W. in preparation): Suppose *  is an analytic uniformly expanding map of
the circle *  has some analytic density *  are a polynomial basis. Then
for some ,

Hence, in the infinite  limit, Koopman matrix data converge exponentially fast with .
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N K



For dynamical systems we can do stuff with, partial results are out there for the special
cases: Ulam, Chebyshev-Lagrange, …

Theorem (W. in preparation): Suppose *  is an analytic uniformly expanding map of
the circle *  has some analytic density *  are a polynomial basis. Then
for some ,

Hence, in the infinite  limit, Koopman matrix data converge exponentially fast with .

f

μ {ψk}k=1,…,K

R > r > 1

∥LPK − L∥H ∞(Ar) ≤ C(R/r)−K.

N K

Of course, this is the nicest possible setting and convergence will be a lot slower for
anything not analytic, uniformly hyperbolic…



Thank you!




