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Introduction

— Take a data sample of M points x' ~ p from an unknown
(sub-)manifold D.

- Aim: do computations on (or visualise) the manifold using this
data.

— Natural object: Laplace-Beltrami operator (weighted by p)
L = iV -(pVo) = %A¢+%Vlogp - Vlog ¢
— This is the generator of the gradient diffusion
dX' = = Vlog p(X") dt + dW"




Diffusion maps algorithm

We approximate the semigroup et (transition kernel of a biased
l [ ]
random walk), on the data {x'},_; Gavssian kernel

— Start with a kernel matrix Ic{/ of variance &
K:={g' =X} =1 m

— Bias towards certain points, encoded by weight vector u
— Normalise to a Markov matrix by v := 1/(Ku):
P .= diag(v) K diag(u).

— The invariant measure of the process is u/v =~ pu2 ( = p).



Standard weights

- Standard weights are powers of kernel density estimates of p:
u= (K1)
— These converge to the following family of diffusions:
Fp=20p+(1—a)Viogp - Vb
- o = 0 is standard graph Laplacian normalisation
- a = 1/2 is Langevin diffusion on p
- a = 1 is standard diffusion independent of p
— Other weights also possible
- Will discuss Sinkhorn weights later...



What do we get from L-B operators?

— Eigenfunctions of Markov operators define intrinsic coordinates
on manifold (Coifman ’06)

- The first few eigenfunctions are usually enough to faithfully
represent D in a low-dimensional ambient space

2nd eigenfunction 6th eigenfunction




Why do this?

— Mesh-free PDE solving (Vaughn et al. 19, Jiang & Harlim '20)

— Compression of other operators via projection onto Laplacian
eigenbasis.

— E.g. Perron-Frobenius operators for forecasting: Berry et al.
'15, Giannakis '19



Convergence of diffusion maps

Weighted matrix P
= finite-rank operator g’fl

“Variance” error

M — Pointwise

convergence
e—0,e Mz — 0

Weighted kernel b

operator &P,
(spatial continuum limit) “Bias” error

e—>0
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Pointwise convergence results

Pointwise error bounds are well known:
(PY D)) — (e ) (x)
— The bias error (Singer '06):
[(PH®) — € ZH D) | = OEpllip)

— If u does not depend on the x' (e.g. a = 0), the
just a CLT estimate

(P P)x) = (Pp)x) | = OMZE || Pl o)



Specl'ral convergence resuh-s From timestep, expect

magnification of

/ pointwise error by 7!

Expect pointwise convergence rates hold for spectral data, but...

Bias error estimates are typically L? — L? error: O(e'?).
estimates:

- Via compact embedding of Glivenko-Cantelli classes

- Establish qualitative convergence, with bad rates

- e.g. Shi (2015): variance error = M ffl/zg_?’d/“ 3

- Optimal transport results
— Garcia Trillos et al. (2019): OT rate O(M;fg/d”(l))

- Calder and Garcia Trillos (2019): bootstraps off previous
results using central limit theorem + Rayleigh quotients

- Issue of recursively applying CLT

How to prove pointwise convergence rates hold for
spectral data, for a broad range of problems?




Structure of talk

— Variance error: local embedding estimates
— Bias error: PDE operator theory
— Sinkhorn weights: a nice application of the tools

NB: for simplicity, we will make our manifold a flat torus:

D = (R/Z)...



Interpolating the matrix

How does the matrix P relate to the functional operator et7?

If 2 = (PO,
(Kz); = Zggx — X)) =: HM(x')

] 1
So, there is a natural way to interpolate:

- Standard weight u = (K1) % is UM = (%#M1)~
~ Left-hand weight v = 1/(Ku) is VM = 1/(FMUM)
~ Weighted matrix P = diag(v) K diag(u) is ¥ = VMMM,

1 for some function ¢, then



Variance error

Kernel matrix K can be interpolated on functions:

1 & o
HPE) =— Y .= xhp) = € [p" ),
i=1

/

convolution by g, Sample measure

The continuum limit is then

F P(x) = J 8(x = y)p()p(y) dy = € [pp].
D
FMP(x) is just an empirical mean with expectation F ¢ (x), so CLT

results give pointwise convergence:

P [|HYpx) — Hpx)| > cllglle,] < Coe M

How can we extend this to operator convergence?




Variance error: central limit theorem

We can extend using compactness/covering arguments.

* Function norm: D can be covered by O(£7%) balls of radius é’z 2

PZY$~ H pllco > (c + ELip gl o] < OE e M),

* Operator norm: harder. Need ¢ to be in a function space
embedding (very) compactly into C.

* This function space should contain im Y, im % ..



Variance error: Hardy spaces

We will choose our “strong” function spaces as the scale of Hardy
spaces

H> = {ql) e CYD,) : ¢ analytic on int [D)g},
where D, is the complex \/;-fq’r’rening of D. D,

These spaces are useful because

1Bl oo = OCD).

0.0 0.2 0.4 0.6 0.8 1.0



Variance error: Local embedding

— The H;*° unit ball can only be covered using O(eg_dlz(log‘f)d) CY
balls of radius £. OK for € = 1...

— Fortunately, our operator %y is very localised.

- FMp(x) mostly depends on ¢ in an O(ﬁ)-neighbourhood
of x.

— H_® on this neighbourhood has Ve <5

nice covering numbers
— Upshot: |>'> \/g’l
P ||<%M — A ”H co > C] < eCz(logc+10gg—1)2d+1_C1M€—d/2cz
€ eNHX— = .

o De




Variance error: Norm convergence

We can use the divisibility of the Gaussian kernel so
‘%fy — CgepM — %8/2‘%52'
and that ||€, || co_ g = O(1) to show
||=%Q4 _ ‘%g”Hgoach’ — 0(1) X 5:
where
o= ||5LVZ12 — Eepllpeco = OM 2= % log terms).

From here we only need to use 0 to think about our error bounds.



Variance error: weighted operator

We should now consider the convergence as M — oo of
UY = (x¥1)™
and
VM = (ZMUuMy~L,
Fortunately, norm convergence gives us
”Uéw — Ue”HgO, ”Véw _ Ve”Hgo = 0(5)
So with P .= VM gMyM,
”g)y_ @g”Hgo = 0(0).



Bias error: PDE limit

Now need to compare &, and e°

<



Bias error: PDE limit

Now need to compare " and e for n = O(e™!)
These are both Markov operators, and since

— _ 1 A72
gée T Ve‘%eUe _ esA2[pU ] e’ pUe:

they are 0 — ne evolution operators of the PDEs

09" = ZLP' = A¢"+ (1 —a)Viogp - V'

and /
0,0' = >A¢" + ViogeVA2[pU,] - V.

Because pU, = p1=% 4 O(e), the two drift terms are O(e)-close, and
we get an error

e{t/e}

|28 = €"* | c2ec0 < OCe)

for n = O(¢™1). Playing around with negative Sobolev spaces
means this works for low regularity p € C***7,



Spectral convergence

Look at spectral projections on nth powers of operators for

n= 0.

Gaussian and Schauder estimates give us uniform bounds on

”ene‘g, @Z”LP—)C" for any kl p-

A priori bounds on norm of resolvent R(e"%Z, 1) in L2(U€/V8) by
orthogonality.

Use our operator convergence estimates to get estimates on
resolvent error from C**7 — CV.

Use that spectral projection of operator &f onto eigenvalues in
B(A,r) is

1
H=—.[ R(A,z)dz.
27l COr)

Note: could use Rayleigh quotients instead

20



Spectral convergence

— This gives us that elgenvalues and eigenvectors (in CY) of @M
converge to those of ¢Z a

O(M—1/28—d/4—1 + 8)

S

Pointwise bias error X £~}

Pointwise variance error X e !

— The bias error is optimal but the variance error for spectral
data can be improved by €’ for some s small

100 5 < 10° E
] —— €=0.001 ] — M =320
€ = 0.0022 M = 1500
= —— €=10.0046 _ —— M = 6800
S — =001 S —— M = 32000
i 10-1 4 — ¢=0.022 = 1 M = oo
S 1 . -1/2 S —_—— /a1
s === ~ Mg =
3 <
=, =
= < =
\\* 1072 4
10~2

101 100 10! 102
Moy = Me9/2
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Sinkhorn weights

The M — oo operator convergence theory lets us work with all
sorts of interesting particle discretisation problems.

What about the diffusion maps normalisation u = v¢
P = diag(u) K diag(u).

- P is symmetric, so eigenfunctions are orthogonal
- Total integral and constant functions are preserved
— Other nice properties?

22



Sinkhorn weights

The weight u solves the Sinkhorn problem
u X (Ku) = 1.
In function space:
UM x ZM UM = 1.
We can link this to continuum limit U, just by using the implicit
function theorem.

In particular, for all € small and 6 < G,

”Uéw_ Ug”Hgo < C35'

23



Sinkhorn weights: improved bias error

But what do the U, look like?
From the Sinkhorn problem
UXKZU =U,X€ElpU,] =1,
we expect
U.=p 2+ Oe).

In particular, as € = 0 we expect convergence to a Langevin

diffusion (o = 1/2).

Proof: write Sinkhorn iteration in the log-domain as a rapidly-
oscillating nonlinear PDE and average; log p'/*U. is contained in
limit cycle.

24



Sinkhorn weights: improved bias error

We again have that ¢’ and S are respectively 0 — ne
evolution operators of the PDEs

09" = L' = A+ Viogp - V¢!
and

0,0" = A" + Vioge A2 [pU,] - V',

We can approximate %} to O(e?) by averaging over the drift term:
0,0' ~ AP + Vv, - V'

where

W, = 8_1J log e[ pU,] dt
0

25



Sinkhorn weights: improved bias error

We have _
We = 51/ log e'2/2[pU.] dt
0

1(log e*2/2[pU.] + log pU.)
/: %(1ogU€_1 + log U, + log p)

Trapezoidal rule 1
= 3 logp

So the averaging comes out of the symmetry of the operator!

Q

—— Standard weights
—— Sinkhorn weights

drift

p/2

26



Sinkhorn weights: improved bias error

Get an error
2
122 — " || 3w 0 < O(7)
for n = O(e~1). This is the best possible asymptotic rate for
P ymp
weighted operators.

Using negative Sobolev spaces means this works for low regularity
p e CHP

100 5

27



Accelerated Sinkhorn algorithm

How to actually calculate the Sinkhorn weights?

— Standard Sinkhorn iteration: use that u is the fixed point of
u™h = 1/(Ku™).

- Jacobian about the fixed point is conjugate to —P (weighted
matrix)

- Convergence is ~ A/, where 4; = 1 — O(¢) is second
eigenvalue. (Slow)

28



Accelerated Sinkhorn algorithm

- Instead:
— Sinkhorn step: u"t13) = 1/(Ku™)
— Sinkhorn step: u"**3 = 1/(Ku"1/3)
— Geometric mean: "t = \/u(”+1/3)u(”+2/3)

— The Jacobian of this algorithm is P(1 — P)/2. Because
o(P) C [0,1], this converges ~ 87",

10" 4
8
= 1072
=
-
ED 10—5_
|
B 8 :
= 107° 1 —— Sinkhorn
&0 M
,_<O ., -—— e e,1
R U ASSA
Y. aeees ]~
10—14




Conclusion

- Near-optimal bounds on spectral convergence rates (for
Gaussian kernels, on flat domains).

— Broadly applicable theoretical techniques for convergence of
kernel methods

— Sinkhorn normalisation for diffusion maps works, and is the best
choice for Langevin dynamics

Wormell, C.L. and Reich, S., Spectral convergence of diffusion
maps: improved error bounds and an alternative normalisation

(2020). arXiv:2006.02037
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